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ABSTRACT

This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way
reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the
critical role of elitism in GA performance. Without elitism, the GA consistently failed to
reach the target objective, with success rates often nearing zero across various crossover
fractions. Incorporating elitism dramatically increased success rates, highlighting the
importance of preserving high-performing individuals. With an optimal configuration of 0.3
crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost
of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to
designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between
5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and
cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64
scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost
versus slab length diagrams illustrate the economic benefits of GA optimization.
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1. INTRODUCTION

In an era marked by rapid urbanization and escalating demands on infrastructure, the
construction industry confronts a pivotal challenge: the need to deliver structures that are not
only safe and sustainable but also cost-effective. Reinforced concrete, a cornerstone material
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in modern construction, is celebrated for its durability and versatility. Nevertheless, its
utilization is often accompanied by significant material and labour costs. Consequently,
optimizing the design of reinforced concrete structures and elements, such as one-way slabs,
becomes essential for minimizing material waste and maximizing resource efficiency
without compromising the structural integrity. This optimization is critical to ensure that
infrastructure development keeps pace with urban growth while adhering to economic and
environmental sustainability goals.

The primary objective of an optimization algorithm is to either minimize the utilization of
resources or to maximize the benefits obtained [1]. Optimization is defined as the process of
identifying the most efficient solution within established constraints [2]. It involves
determining the most advantageous outcome while adhering to a specific set of limitations.

Reinforced concrete is a predominant material in the construction industry, esteemed for
its extensive applicability and reliability. A paramount objective within this domain is to
reduce the costs associated with reinforced concrete structures. Over recent decades,
significant emphasis has been placed on optimizing the design of these structures to enhance
cost-effectiveness. The pursuit of more economically viable and resource-efficient
reinforced concrete constructions has spurred extensive research into various facets of
design optimization. A critical focus area involves augmenting the efficiency of traditional
design methodologies by integrating advanced optimization algorithms to identify the most
optimal configurations for structural elements such as frames [3, 4], beams [5, 6], columns
[7, 8], slabs [9, 10], retaining walls [11], and other structural elements.

To demonstrate advancements in this area, various studies have employed a range of
optimization techniques for cost-effective designs. For example, Kaveh and Shakouri
Mahmud Abadi (2011) utilized the Harmony Search Algorithm to optimize slab formwork
design. Inspired by musical harmony, this method aims to minimize costs while meeting
constraints such as bending moments, shear forces, deflection limits, and compliance with
code provisions. The study successfully identified optimal cross-sections and spacing for
formwork elements like joists and stringers, resulting in significant cost reductions [12].

Kaveh and Behnam (2012) employed innovative physics-based algorithms, namely the
Charged System Search (CSS) and the Enhanced Charged System Search (E-CSS), to
optimize various floor systems, including composite slabs, waffle slabs, and concrete
formwork, with an emphasis on minimizing costs. Their study compared the performance of
CSS and E-CSS against the Improved Harmony Search algorithm, underscoring the potential
advantages of CSS in achieving cost-effective solutions [9]. In another study, Kayabekir et
al. applied multiple metaheuristic algorithms such as Harmony Search, Teaching-Learning-
Based Optimization (TLBO), Flower Pollination, and Jaya to optimize the dimensions of T-
beams in accordance with Eurocode regulations governing concrete design. Notably, the
TLBO algorithm consistently yielded the most optimal T-beam dimensions among the
evaluated methods, demonstrating its superior effectiveness for this specific optimization
task [6]. Bekdas et al. (2022) used the Harmony Search algorithm to optimize reinforced
concrete circular column dimensions, minimizing steel and concrete costs. Focusing on
column diameter and steel area, they generated 3125 optimal designs. Using SHAP and
ensemble learning, they analyzed variable impact and objective function relationships to
develop high-performance machine learning models for structural design [13].
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Kaveh and Bijari (2014) utilized various metaheuristic algorithms, including Colliding
Bodies Optimization (CBO) and Democratic Particle Swarm Optimization (DPSO), to
minimize the construction costs of one-way reinforced concrete ribbed slabs. These
algorithms were developed to address the premature convergence issues commonly
associated with standard Particle Swarm Optimization (PSO). When compared to the
Harmony Search algorithm, both CBO and DPSO demonstrated enhanced performance and
faster convergence rates in the optimization process [10]. Ahmadi-Nedushan and Varaee
(2009) applied a modified version of PSO algorithm to the optimal design of reinforced
concrete earth-retaining walls, addressing dual objectives of minimizing both weight and
cost [14].

Habibi et al. (2016) applied the Lagrange Multiplier Method (LMM) to design cost-
effective singly and doubly reinforced rectangular concrete beams. Their objective function
focused on minimizing the costs of concrete and steel materials while ensuring the beams
met the ultimate flexural strength requirements as per the Iranian National Building
Regulations (INBR9). The LMM enabled the derivation of closed-form solutions for optimal
designs, which were graphically presented in the study. This approach effectively identified
minimum cost designs without the need for iterative experimentation [15]. Shobeiri and
Ahmadi-Nedushan (2019) used Bi-Directional Evolutionary Structural Optimization (BESO)
to optimize 3D prestressed concrete beam layouts. Their study demonstrated BESO’s
effectiveness in finding optimal topologies while considering prestressing stress, geometric
discontinuities, height limits, and strut-and-tie models. BESO improved both design
efficiency and material use. [16].

Olawale et al. (2020) used a genetic algorithm (GA) to optimize reinforced concrete
waffle slab design for cost-effectiveness by minimizing material and formwork costs. Their
optimized designs achieved a low steel ratio of 2.2% [17]. Afsal et al. (2020) conducted a
critical review of reinforced concrete (RC) structural design optimization, addressing a gap
in the literature by providing a comprehensive overview of computational design
optimization research for RC structures. The review examines various objectives,
components, strategies, and computational tools, offering detailed insights into integrating
optimization strategies with computational tools for RC structural design. Interested readers
can refer to this article to explore further applications of optimization in concrete structures
[18].

To narrow the scope from general studies to more relevant research, the ensuing section
investigates developments in the optimization of reinforced concrete one-way solid slabs.
Designed to bear all applied loads through bending in a single direction, one-way slabs
typically have a width-to-length ratio of two or more. Early studies by Brown (1975) and
Brandum-Nielsen (1987) utilized simplifying assumptions in their optimization approaches.
Brown (1975) addressed the optimal cost design of one-way concrete slabs by formulating it
as a single-variable optimization problem aimed at determining the optimal thickness for
uniformly loaded, simply supported slabs. This study considered only flexural deformations,
relying on other simplifying assumptions to streamline the analysis [19]. Brendum-Nielsen
(1987) proposed a method to minimize reinforcement costs across various RC structures,
including shells, folded plates, walls, and slabs. The approach involved minimizing the sum
of forces within the steel reinforcement in two perpendicular directions. While the study
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provided an academic example, it did not incorporate code provisions into the optimization
process [20].

While the methodologies developed by Traum and Brgndum-Nielsen were groundbreaking
for their time, they inherently possess limitations due to their simplified frameworks. In
2005, Ahmadkhanlou and Adeli introduced a neural dynamics model aligned with the
American Concrete Institute (ACI) code, marking a significant advancement toward
practical design optimization [21]. Their research focused on the optimal cost design of
reinforced concrete (RC) slabs in accordance with ACI 1999 code provisions. They
formulated the optimization problem as a mixed integer-discrete variable model,
incorporating three primary design variables: slab thickness, steel bar diameter, and bar
spacing.

Building upon this foundation, Ahmadi-Nedushan and Varaee (2011) investigated the
cost optimization of one-way concrete slabs using PSO, adhering to ACI 318-M08 code
requirements. Recognizing that PSO is typically suited for unconstrained problems, they
adapted the algorithm with a multi-stage dynamic penalty function to effectively manage
constraints. Their study presented cost optimization results for four slabs under varying
support conditions, comparing these outcomes to existing methods. The authors concluded
that PSO demonstrates significant promise as a method for optimizing structural elements
[14]. In 2017, Ghandi et al. employed the cuckoo optimization algorithm for the cost
optimization of both one-way and two-way RC slabs, in compliance with ACI 318-99
standards [22]. The objective function aimed to minimize the total cost of the slabs,
encompassing both concrete and reinforcing steel expenses. This study contributed to the
existing literature by evaluating the cuckoo optimization algorithm within the context of
structural optimization, seeking to enhance cost efficiency in concrete slab design. The
discussion included comparisons with previous optimization algorithms, such as PSO,
highlighting the relative strengths and potential applications of the cuckoo method.

Sedaghat Shayegan (2022) introduced a cost-minimization approach for designing
reinforced concrete (RC) slabs by leveraging a hybrid metaheuristic algorithm [23]. This
methodology employs the Mouthbrooding Fish Algorithm (MFA) as the primary
optimization engine, capitalizing on its proficiency in efficiently exploring the design space.
To further enhance performance and mitigate the risk of converging to local optima, the
algorithm integrates the advantageous properties of the Colliding Bodies Optimization
(CBO) method. In this study, continuous variables were utilized to represent the area of
reinforcement bars (rebars). However, this approach overlooks a critical practical aspect of
construction engineering: rebars are available only in discrete, standardized sizes. As a
result, the model’s outputs may not translate effectively to real-world applications, limiting
its utility in practical construction projects where material availability and standardized
dimensions dictate design and execution.

Although previous studies have advanced the field of structural optimization, they have
predominantly relied on outdated building code provisions. The latest edition of the
American Concrete Institute’s building code (ACI 318-19) introduces updated design
requirements for reinforced concrete structures, directly influencing cost-optimization
strategies. To date, no research has investigated the optimization of one-way slabs using the
provisions of ACI 318-19. This study addresses this gap by employing a GA to develop
cost-effective designs that comply with the latest code requirements.
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Building upon earlier research, this article explores how a Eliticist GA-based
optimization, aligned with ACI 318-19, can achieve cost-optimized designs for one-way
slabs under varying support conditions. The optimization process considers key design
variables, including slab thickness, rebar diameter, and spacing, with the objective of
minimizing total material costs while adhering to the code’s specifications. Additionally, this
work examines the impact of the updated constraints in ACI 318-19 on cost-effectiveness by
comparing them to earlier versions (ACI 318-99 & 08), thereby highlighting how the latest
code revisions influence optimal design costs.

The article is structured as follows: Section 2 provides a comprehensive analysis of the
optimization problems, detailing the design variables, objective function, and constraints
imposed by ACI 318-19. Section 3 describes the Genetic Algorithm (GA) approach used for
optimization. It explains the core GA principles of selection, crossover, and mutation, and
how these operators guide the search for optimal solutions. The section also details the
implementation in Matlab, emphasizing the handling of discrete variables and constraints
using the Augmented Lagrangian Barrier Algorithm. Section 4 presents the optimization
problems, focusing on minimizing material costs for four types of one-way reinforced
concrete slabs with varying support conditions, subject to ACI 318-19 code constraints. It
details the optimization process, including a sensitivity analysis of the genetic algorithm
(GA) parameters, compares the GA results with existing literature, analyzes constraint
values at optimal design points, and investigates the influence of span length on material
costs. Finally, Section 5 concludes the article by summarizing the key findings and their
implications.

2. THE DEFINITION OF OPTIMIZATION PROBLEM

An optimization problem is defined by several critical components: design variables, the
objective function and constraints. Design variables are the parameters that can be adjusted
or controlled within the optimization process. In the context of optimizing one-way slabs,
these variables may include slab thickness, steel bar spacing, bar diameter, concrete
compressive strength, and steel reinforcement yield strength. Each design variable
corresponds to a specific aspect of the slab’s geometry or material properties, which can be
manipulated to achieve an optimal design. The objective function often referred to as the
cost function in minimization problems, is a mathematical expression that quantifies the cost
or performance of various design configurations.

In this study, the objective function primarily aims to minimize the total material cost,
encompassing expenses related to concrete and steel reinforcement. The objective is to
identify the combination of design variables that results in the lowest possible cost while
satisfying all necessary requirements. Constraints are the mandatory conditions that a design
must satisfy to be deemed feasible. For the optimization of one-way slabs, these constraints
are derived from the ACI 318-19 provisions [24]. They encompass requirements for
reinforcement placement, applied loads, strength reduction factors, and other structural
specifications. Constraints ensure that the optimized design not only achieves cost
minimization but also adheres to the safety and performance standards established by
engineering codes.
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2.1 Design Variables

The optimization process is centered around three primary design variables: slab
thickness (h), reinforcement bar spacing (s), and the diameter of reinforcing steel bars (d).
The GA is employed to identify cost-effective design configurations under four distinct slab
support conditions: simply supported, one end continuous, both ends continuous, and
cantilevered. These varying support conditions introduce different structural behaviors and
constraints, necessitating tailored optimization strategies to achieve the most efficient
designs.

Fig. 1 illustrates the standard cross-sectional geometry of a one-way slab, highlighting the
key design variables involved in this optimization study—slab thickness (h) and
reinforcement bar spacing (s). Both slab thickness (h) and reinforcement bar spacing (s) are
treated as discrete variables within the optimization framework, meaning they are adjusted in
fixed increments that reflect standard construction practices and material availability.
Specifically, slab thickness may vary within a predefined range to accommodate different
load and span requirements, while bar spacing is selected from standardized intervals to
ensure uniform distribution of reinforcement and adherence to structural standards.

b
| | 0.85fc”

O O O O O E — TS

Figure 1: Typical geometry of one-way solid slab cross section

Similarly, the diameter of reinforcing steel bars (d) is considered a discrete variable,
with eleven standardized options corresponding to bar sizes ranging from #3 to #18. These
diameters span from 0.375 inches to 2.257 inches, providing a range of reinforcement
options that balance structural strength with material cost. By constraining these variables to
standardized values, the optimization process remains practical and aligned with real-world
construction constraints.

2.2 Objective Function

The optimal design of a concrete slab is achieved by minimizing the total costs of
materials, summing the expenses related to concrete and steel reinforcements. The objective
function is structured to consider both the volume of concrete and the weight of steel
reinforcement, with the goal to determine optimal values for the slab thickness (h), the steel
bar diameter (db), and the bar spacing (s) that lead to cost minimization.This cost function
can be expressed as:

Minimize f (h,dp,s) = Pc + Ps = VcCc + WsCr Q)
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Subject to

gi(h,dp,s) <0,i=1,..,m )

where f denotes the cost function in monetary units (e.g., USD), V¢ (measured in in3)
represents the volume of concrete used, Pc is the cost associated with concrete (in USD), Ps
is the cost associated with steel reinforcement (in USD), Cc (measured in USD/ind) is the
cost per unit volume of concrete, Ws (measured in pound, Ib) is the weight of steel
reinforcement, and Cs (measured in USD/Ib) represents the cost per unit weight of steel
reinforcement. As per previous studies, the cost of formwork and labor are not included [21,
22].

The inequality constraints (gik,b,s<0,,i=1,...,m) represent various design constraints that
must be satisfied to ensure the structural integrity and compliance with design codes. The
concrete cost is given by:

P.=L b hC, 3)

where L, b, and h are the length, width, and thickness of the slab (all in inches), and P, is
the cost associated with concrete (in USD).
The steel cost is determined by:

Ps=ys L As Cs (@)

Here, y, is the unit weight of steel (kg/m3), A, is the cross-sectional area of the steel bars
(in?), and L is the span length (in). The cross-sectional area of the steel reinforcement A is
computed as:

mdy? b ®)
ST 4 s

with d, is the diameter of the steel bars (in) and s is the spacing between the bars (in).

2.3 Design Constraints

The design constraints (g;(h,d,,s) <0,,i =1,..,m) are crucial in optimization
problems as they establish the limits that any solution must satisfy to be viable. These
constraints define the feasible search space and are categorized into two primary aspects of
design evaluation: strength (focusing on flexural and shear capacities) and serviceability
(emphasizing reinforcement limitations and deflection norms) in accordance with ACI 318-
19 guidelines [24].

2.3.1 Flexural strength constraint

A fundamental constraint is ensuring adequate flexural strength, which is the slab’s
ability to resist bending moments. The nominal flexural strength, denoted as @M,,, must
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exceed the ultimate design moment M,. This requirement can be expressed as the following
constraint

gl(x)=;17“n—1$0 ® =09 (6)

The ultimate design moment M,, is determined using:

M, = k.w.IL3 (7)

where L,, represents the clear span length, k is the bending moment coefficient, and w

denotes the factored distributed load. The bending moment coefficient is determined based

on the type of slab support conditions. Bending moment coefficients, dependent on the type
of slab support conditions, are enumerated in Table 1.

Table 1; Bending moment coefficients for different one-way slabs

Simply Supported One end continuous  Both ends continuous Cantilever
1/8 1/10 1/11 1/2

The factored uniform distributed load w is calculated as:
w=12 (DL b+DL,)+1.6 LL b (8)

Here, DL signifies the dead load excluding the self-weight of the slab, LL is the live load.
DLs the slab’s self-weight, calculated by:

DLy = (h b—Ag) w, + As ws 9)
In this equation, wc is the weight of concrete per unit volume. The nominal flexural
moment, @M,, is described as follows:
_ a 10
Mn _Asfy (d_z) ( )

The yield strength of the reinforcing steel bars is symbolized by f, , and a, is depth of
equivalent rectangular stress block, can be determined using as:

a= Asfy (11)
~ 0.85f/.b

where f,' defines the specified compressive strength of concrete.

2.3.2 Shear constraint

As detailed in Eq. 12, the constraint for shear strength requires that the ultimate factored
shear force, V;,, should not exceed the nominal one-way shear strength, @V;;:

|4
gz(x)=®—;—1S0 @ = 0.75 (12)
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1, , the ultimate factored shear force is calculated as:
wL
V, =k, 2" (13)

where k,, is the shear force coefficient, which is determined based on slab support. The
nominal one-way shear strength V. is outlined as:

V. = 2A\/f/bd (14)

where 1 is a modification factor reflecting the mechanical properties of lightweight
concrete relative to normal-weight concrete of the same compressive strength, which is set
to 1.0 for this scenario. The shear coefficients for different one-way slabs (Table 2) reveal
the variations in shear resistance due to different slab support conditions.

Table 2: Shear coefficient for different one-way slabs

Simply Supported ~ One end continuous  Both ends continuous Cantilever
1 1.15 1 2

2.3.3 Serviceability constraints

Serviceability constraints ensure that concrete structures perform their intended function
over time while maintaining durability and appearance. A critical aspect of serviceability is
controlling cracking and ensuring sufficient ductility, which are directly related to the strain
compatibility between the concrete and the reinforcing steel. This relationship, depicted in
Fig. 2, illustrates the tensile strain behavior of both materials under load. Understanding and
managing this strain compatibility is essential for the long-term durability of the structure.
To ensure this, design requirements include limitations on reinforcement tensile strain (&,),
reinforcement area, and bar spacing. The tension-controlled criterion for the tensile strain of
reinforcing bars (Eq. 15) ensures sufficient ductility:

& = &, +0.003 (15)
where
€ty = ];_y (16)

The ACI code provides a framework to calculate serviceability requirements. Equations
17 through 20 (g5 to g,) define the serviceability constraints, such as the strain compatibility
condition (Eq. 17, g3), which ensures that the actual strain in the tension steel (&;) surpasses
the yield strain plus an additional strain component. The minimum area of reinforcement
(Eq. 18, g,), as well as the minimum (Eq. 19, g<) and maximum (Eq. 20, g,) spacing of the
bars, are specified to control cracking and and maintain the structural integrity of the one-
way slab.
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g, = 0.003

B o

& = & + 0.003

Figure 2: Tensile strain of concrete and reinforcing steel bars

gz(x) = &

As

g4(x)=1—A <0

smin

gs(0) =10 —1<0
gé(x)=$—150

B, can be calculated as:

0.85

B, = ~ fi — 4000\ _
085~ 0.05 (- = 065

The minimum quantity of flexural reinforcement required for a safe, and serviceable

design is specified through:

Ag min = 0.0018 bh

&y + 0003

for f. <4000 psi

for f! > 4000 psi

The minimum and maximum values of bar spacing are defined as follows:

4
Smin = Max (1”, dp,= dagg>

3
Smax = min(18",3h)

2.3.4 Deflection constraints

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Deflection constraints ensure that slabs maintain structural integrity by controlling
immediate and long-term deformations under service loads. The relationship between slab
thickness and deflection control is emphasized by minimum thickness requirements in Table
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3, adjusted by support conditions and concrete type as per Equation (25). For one-way slab
designs, deflection criteria require that slab thickness h meets or exceeds the minimum
thickness Amin:

Rmin

Here, hmin values correlate with the support conditions of the one-way slabs as specified
in Table 3. Adjustment factors for slab thickness in Eq. 25 are defined as follows:

a; =04+ Y for normal weight concrete
100,000

a, = max(1.65 — 0.005 w,. 1.09), for lightweight concrete

(26)

Table 3: Minimum Thickness Values for One—Wax Solid Slabs

Simply Supported ~ One end continuous  Both ends continuous Cantilever
L/20 L/24 L/28 L/10

For normal weight concrete, a; adjusts the minimum thickness based on the yield
strength (f;,) of the reinforcing steel. The a, factor for lightweight concrete accounts for the
unit weight (w,), of concrete, addressing variations in stiffness and mass inherent to
different concrete materials. This adjustment is critical for deflection control, ensuring that
lightweight concrete slabs meet serviceability requirements while maintaining safety and
functionality.

The ACI 318-19 code introduced several key changes compared to previous editions,
particularly ACI 318-99, impacting how reinforced concrete structures are designed. These
modifications reflect advancements in understanding concrete behavior and aim to improve
structural performance. The constraints specified by ACI 318-19 differ from those in ACI
318-99 in several key aspects:

1. Shear Strength Reduction Factor (¢): Reduced from 0.85 to 0.75.

2. Maximum Reinforcement: Now determined by the maximum strain in the tension

reinforcement instead of the reinforcement ratio.

3. Minimum Area of Reinforcement: Unified for all concrete classes, regardless of

compressive strength.

4. Ultimate Strain Limit: Changed from a fixed value of 0.004 to a function of yield

strength and modulus of elasticity of steel.

5. Shear Strength Reduction Factor (1): The reduction factor for shear strength (1) has

also been updated in the ACI 318-19 code.

These updates enhance the safety, durability, and serviceability of concrete structures,
ensuring that design criteria align with modern construction practices and materials.

3. GENETIC ALGORITHM APPROACH FOR OPTIMIZATION
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GA is a population-based stochastic optimization method inspired by Darwinian
evolutionary principles. It utilizes operators such as selection, crossover, and mutation to
emulate natural selection and maintain genetic diversity within the population [25].

The GA process begins with an initial population of potential solutions, which evolves over
successive generations. During each generation, the natural selection operator selects parent
solutions based on their fitness, ensuring that higher-quality individuals have a greater
probability of passing their genes to the next generation. The crossover operator then
combines pairs of parents to produce offspring, promoting the exploration of new regions in
the solution space by mixing genetic information. To preserve genetic diversity and prevent
premature convergence, the mutation operator introduces random alterations to the
offspring’s genes.

After these genetic operations, the new population is evaluated against a predefined stopping
criterion, such as reaching a maximum number of generations or achieving a satisfactory
fitness level. This iterative process continues until an optimal or near-optimal solution is
identified. As one of the pioneering population-based stochastic algorithms, GA effectively
navigates complex discrete optimization problems by balancing exploration and exploitation
within the search space [26]. Despite being a traditional algorithm, GAs remain effectively
utilized in numerous structural engineering applications, as evidenced by recent research
[27-32].

In this study, the implementation of the GA was conducted using Matlab’s Global
Optimization Toolbox [33]. To accurately represent the optimization problem, GA treats the
discrete variables as integer variables. A mapping function then associates these integer
representations with the actual discrete variables. Constraint handling is facilitated via the
Augmented Lagrangian Barrier Algorithm, which incorporates both augmented terms and
barrier functions into the objective function, penalizing constraint violations and integrating
the constraints into GA’s evolutionary process. Solutions that fail to meet constraints are
penalized, lowering their fitness scores and reducing their likelihood of selection for
subsequent generations [34].

The unique characteristic of the GA for integer programming lies in its adaptation of the
standard evolutionary operators, which include creation, crossover (recombination), and
mutation, to preserve the integer nature of variables. This adoptation ensures that the
generated solutions remain feasible in the context of discrete optimization problems. During
the creation phase, the algorithm is specifically designed to produce integer values rather
than random real numbers. In the crossover process, offspring derived from parent solutions
are constrained to maintain integer values. Similarly, mutation involves altering a variable
by a discrete amount instead of a continuous shift. These modifications uphold the integrity
of integer variables across generations, allowing the GA to effectively explore the discrete
solution space. The integer-specific evolutionary functions are intentionally crafted to
respect the discrete characteristics of the problem, thereby facilitating the discovery of
solutions that are pertinent to real-world discrete optimization challenges [34].

4. OPTIMIZATION PROBLEMS
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In this study, we focus on minimizing the overall material costs for four distinct types of
one-way reinforced concrete slabs, each exhibiting different support conditions. The
optimization process adheres to specific constraints as mandated by the ACI 318-19
provisions. The variables under consideration include slab thickness (h), steel bar spacing
(s), and bar diameter (d;). Specifically, slab thickness ranges from 5 to 20 inches in 0.25-
inch increments, steel bar spacing varies from 1 to 20 inches in 0.25-inch increments, and
bar diameter is selected from a predefined set of values measured in square inches.

Common parameters for four optimization problems are listed below:
e Slab length (L): 156 inches
Column width: 12 inches
Dead load: 0.0694 Ib/in?
Live load: 0.278 Ib/in2
Concrete unit weight: 0.283 Ib/in3
Steel unit weight: 0.0868 Ib/in3
Modulus of elasticity: 29,000,000 psi
e The cost per unit volume of concrete (C,): 0.0016 $/in3
e The cost per unit weight of steel reinforcement (C,): 0.6486 $/Ib

The primary objective of this study is to assess the efficiency and robustness of the
genetic algorithm (GA) when applied to one-way solid slabs under varying support
conditions. The GA is employed to identify the most cost-effective design that complies
with the ACI 318-19 code, taking into account the different support conditions across the
cases. The optimization outcomes are subsequently compared to findings in existing
literature [14, 21, 22], which underscores the GA’s efficacy in designing reinforced concrete
structures. This is particularly relevant given that the optimal designs referenced in the
literature were derived using previous editions of ACI provisions, highlighting the impact of
evolving code provisions on optimal cost solutions.

4.1 Configuration and Sensitivity Analysis of GA Parameters

The optimization problems were addressed using the GA, with parameters meticulously
determined through a sensitivity analysis performed on case 1 (a simply supported solid
slab). This analysis aimed to pinpoint the most effective GA settings for achieving optimal
performance. The maximum number of function evaluations (NFEs) was capped at 4000 for
all optimization problems to limit computational expense. The algorithm terminates upon
reaching this limit.A population size of 60 individuals was maintained to promote a diverse
pool of potential solutions. MATLAB scripts were developed to systematically explore and
identify the optimal crossover fraction and elite percentage. The crossover fraction was
varied from 0.05 to 0.95 in increments of 0.1, and the elite percentage from 0 to 0.6 in
increments of 0.05, resulting in a total of 117 distinct optimization runs.

Each parameter combination was rigorously tested over 50 independent runs. The success
rate for each configuration, defined as the percentage of runs achieving a target value of
24.91, is visualized in both a surface plot (Fig. 3) and a heatmap (Fig. 4). The analysis
clearly shows that including elitism in the genetic algorithm is essential. Without elitism (an
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elite percentage of 0), success rates drop sharply, often close to zero, regardless of the
crossover fraction used.

This underscores the essential role of preserving top-performing individuals from each
generation to guide the search process effectively. Conversely, increasing the elite
percentage demonstrably improves the success rate, highlighting the benefit of leveraging
the genetic information contained within these high-performing individuals. For instance, at
a crossover fraction of 0.2, increasing the elite percentage from 0 to just 0.05 boosts the
success rate from a meager 10% to a substantial 84% (See Fig. 4).

Surface Plot of Success Rate vs Crossover Fraction and Elite Percentage
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Figure 3: Surface plot of success rate versus Cross over fraction and Elite percentages
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Figure 4: Heatmap of success rate versus Cross over fraction and Elite percentages
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Analysis identified an optimal configuration (crossover fraction: 0.3, elite percentage:
0.45) achieving a 92% success rate (Fig. 4). For the simply supported one-way slab (Case 1),
46 of 50 runs reached the optimal cost function (24.91), representing a 92% success rate
(Fig. 5). With a population size of 60, this configuration retains 27 elite individuals. The
maximum iteration count was set to 120 to ensure that the primary termination criterion was
the NFE limit rather than a premature iteration cutoff. This approach provides ample
opportunity for convergence while mitigating excessive runtimes. The convergence histories
of all 50 runs for Case 1, corresponding to a simply supported one-way slab, are depicted in
Fig. 6.

For optimization of all problems in this article, a constraint tolerance of 1le-05 was
implemented to ensure that the solutions strictly adhere to the defined constraints. The
crossover fraction is set at 0.3, meaning that 30% of the population undergoes crossover
operations, thereby promoting genetic diversity and enhancing the exploration of the
solution space. Additionally, to ensure the reliability of the results, the GA was
independently executed 50 times for each optimization problem, with the best outcomes
from these runs being reported.

2508 Best Costs Across 50 GA Runs
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25.02 —

25 —

Best Cost

24.98 —

24.96 —

24.94 —

24.92 —

249 \ I I \ I I ! \ I |
0 5 10 15 20 25 30 35 40 45 50
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Figure 5: Best costs across 50 runs for case 1 (simply supported one-way slab)

4.2 Comparative Analysis of GA-Optimized Slab Designs Under Various Support Conditions

Table 5 presents a comparative analysis of optimal designs generated by the GA and
those documented in existing literature using previous editions of ACI provisions. The
selected design problems have been previously explored by several researchers.
Ahmadkhanlou and Adeli employed a neural dynamics model [21], while Ahmadi-
Nedushan and Varaee utilized Particle Swarm Optimization (PSO) [14] . Ghandi et al.
implemented a Cuckoo Search algorithm [22]. Although Sedghadat Shyegan [23] also
investigated the optimization of reinforced concrete slabs, their methodology employed a
hybrid mouthbrooding fish algorithm with continuous variables representing rebar areas.
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This approach deviates from practical construction engineering constraints, where rebar
sizes are inherently discrete and standardized. Consequently, incorporating their results into
the comparative analysis would introduce inconsistencies and reduce the relevance of the
comparison. Therefore, their findings are excluded to maintain the integrity and applicability
of the comparative evaluation

The results presented in Table 4 demonstrate a clear trend of cost reduction in reinforced
concrete slab design when using a Genetic Algorithm (GA) optimization approach,
particularly when combined with the latest ACI 318-19 code provisions. Comparing the
costs across the different ACI code years and the GA-optimized results reveals the
magnitude of this improvement.

. Convergence Histories of All 50 GA Runs
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29

28

Best Cost

27
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Figure 6: Convergence histories of all 50 runs for case 1 (simply supported one-way slab)

In Case 1, while previous studies using older ACI codes yielded costs clustered around
26.45, the GA-driven design using ACI 318-19 achieved a cost of $24.908, a reduction of
approximately 6-7%. In Case 2, while previous studies using older ACI codes yielded costs
of 22.76, 22.78 and 22.98, the GA-driven design using ACI 318-19 achieved a cost of
$24.908, a reduction of approximately 8-9%. In Case 3 the GA-driven design results in a
cost of $20.316, which is marginally lower than the costs associated with ACI-2008
provisions ($20.64).

The most notable difference is observed in Case 4. Previous studies utilizing older ACI
codes reported costs between 59.31and 60.22. The GA approach with ACI 318-19 achieves
a significantly lower cost of $55.015, representing a reduction of roughly 7-9%. This
noteworthy cost saving demonstrates the power of the GA to exploit the updated code
provisions and identify a significantly more efficient design. Specifically, while the slab
thickness (h) and bar diameter (d,) are similar across the studies, the GA identified a
markedly different reinforcing bar spacing (s = 12.0 in) compared to previous studies (s = 2
in, 9.5in,and 12.5in.
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These findings collectively emphasize the synergistic benefits of using GAs in
conjunction with updated building codes. The GA’s ability to explore a wider design space
and exploit the nuances of the latest code provisions leads to significant cost savings and
more efficient structural designs.

4.3 Analysis of Constraint Values at Optimum Design Points

Table 5 presents the values of various constraints at the optimum design points for each
case. The value of constraint g,, representing flexural strength, consistently approaches zero
across all cases. This indicates that g, is an active constraint for all designs, signifying that
the bending moment capacity is the primary governing factor. Specifically, in cases 1, 2, and
4, exhibits values of -0.006, -0.001, and -0.006, respectively.

Table 4: Results of GA for Slabs with different support conditions
Design  Design  ACI318-99 ACI318-08 ACI318-99 ACI318-19

Case variables [21] [14] [22] This article
h (in) 6.75 6.25 6.25 6.25
s (in) 6.5 9 14.5 6.5
1) dy, (in) 0.375 0.5 0.625 0.375
Cost ($) 26.45 26.57 26.36 24.908
h (in) 5.57 5.25 5.25 5.25
@) s (in) 7 55 10 7.25
dy, (in) 0.375 0.375 0.5 0.375
Cost ($) 22.98 22.76 22.78 21.253
h (in) 4.75 4.5 4.5 5.0
3) s (in) 7 55 10 7.5
dy, (in) 0.375 0.375 0.5 0.375
Cost ($) 19.93 20.64 20.5 20.316
h (in) 135 125 125 125
@) s (in) 2 12.5 9.5 12.0
dy, (in) 0.375 0.625 0.875 0.875
Cost ($) 60.22 59.31 59.96 55.015

Table 5: The values of the constraints at optimum points for slabs with
different support conditions

The values of the constraints

Design case

01 02 (0K] 04 Os Os g7
1 -0.006 -0.664 -0.908 -0.510 -0.846 -0.639 -0.002
2 -0.001 -0.581 -0.898 -0.612 -0.862 -0.540 -0.010
3 -0.026 -0.626 -0.895 -0.636 -0.867 -0.500 -0.109
4 -0.006 -0.563 -0.876 -1.182 -0.556 -0.875 -0.002

In contrast, case 3 records a g, value of -0.026, which, while still indicating compliance,
is less proximate to zero compared to the other cases. This deviation arises from the
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utilization of discrete design variables, which restricts the optimization process to predefined
values, thereby limiting the ability to achieve a g, value closer to zero without
compromising structural integrity. The constraint g, ,pertaining to deflection, is marginally
close to zero in cases 1, 2, and 4, with values of -0.002, -0.010, and -0.002, respectively.
This proximity indicates that g, is also an active constraint in these cases, suggesting that
deflection limitations play a significant role alongside flexural strength in influencing the
design. However, in case 3, g, is considerably further from zero (-0.109), implying that
deflection constraints are less restrictive in this scenario compared to the others. This
discrepancy can be attributed to the discrete nature of the design variables employed, which
constrains the optimization process and affects the interplay between various structural
constraints. The remaining constraints (g2 to ge) consistently exhibit negative values across
all cases, indicating compliance with the respective limitations. These constraints encompass
various aspects of structural performance, such as shear strength, serviceability. The uniform
compliance across these constraints underscores the robustness of the optimization approach
in adhering to multifaceted structural requirements

4.4 Sensitivity Analysis: Influence of Span Length on Optimal Material Costs

To understand the impact of span length and support conditions on the optimal material
costs of reinforced concrete slabs, a sensitivity analysis was performed. Sixteen span lengths
ranging from 5 to 20 feet in one-foot increments were analyzed, along with four support
conditions: Case 1: Simply Supported; Case 2: One End Fixed, One End Simply Supported;
Case 3: Both Ends Fixed; and Case 4: Cantilever. This resulted in 64 optimization problems
being solved using GA.

Fig. 7 illustrates the relationship between span length and optimal total material cost for
each support condition. For shorter spans (less than 10 feet), optimal costs remain relatively
stable. As span length increases beyond 10 feet, costs rise significantly, with the rate of
increase varying depending on the support condition. Slabs with both ends fixed (Case 3)
consistently demonstrated the lowest optimal material costs, approximately 92% lower than
the cantilever case (Case 4) for a 15-foot span. Conversely, cantilever slabs exhibited the
highest costs due to the increased bending moments they must resist. These results
underscore the importance of optimizing support conditions early in the design phase,
particularly for longer spans, to achieve cost-effective reinforced concrete slab designs
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Optimum Cost vs. Span for Different Slab Types
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Figure 7: Influence of Span Length and Support Conditions on Optimal Material Costs
for One-Way Reinforced Concrete Slabs

5. CONCLUSIONS

This study demonstrates the effectiveness of an elitist GA for optimizing the material
cost of one-way reinforced concrete slabs. By adjusting key design variables: slab
thickness, rebar diameter, and rebar spacing, the GA minimized costs for four support
conditions: simply supported, one-end continuous, both-ends continuous, and
cantilevered. Compared to designs based on ACI 318-99 and ACI 318-08, the GA
achieved material cost reductions of between 5.8% to 8.6% for the different types of
supports, all while adhering to the latest ACI 318-19 code requirements.

The GA’s robustness is highlighted by its consistent compliance with flexural strength
and deflection limits across all slab types. The optimized designs maintained structural
integrity while achieving superior cost-effectiveness compared to previous standards.
This integration of GA with ACI 318-19 ensures both material savings and adherence to
stringent safety and performance criteria.

Careful tuning of the GA parameters, specifically the crossover fraction and elite
percentage, was crucial for optimization success. An analysis of 117 experimental runs
demonstrated the significant influence of these parameters on algorithm performance.
Without elitism (elite percentage = 0), increasing the crossover fraction worsened
performance, indicating difficulty in retaining good solutions, with success rates often
dropping to 0%. Introducing elitism dramatically improved optimization by preserving
top-performing individuals from each generation, stabilizing the search and increasing
the likelihood of finding optimal or near-optimal solutions. A crossover fraction of 0.3
combined with an elite percentage of 0.45 yielded the highest observed success rate of
92%.

A comprehensive sensitivity analysis investigated the impact of slab length (from 5 to
20 feet in one-foot increments) across all support conditions, resulting in 64 unique
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optimization scenarios. The resulting cost versus slab length diagrams reveal a clear
trend of increasing material cost with increasing slab length. Continuously supported
slabs benefited from improved load distribution, leading to lower material costs as slab
length increased. Conversely, cantilevered slabs exhibited higher material costs due to
the increased reinforcement needed to manage larger bending moments over longer
spans.

Material costs stay relatively constant for slabs shorter than about 10 feet. Beyond this
length, costs increase significantly, with the rate of increase depending on support
conditions. Continuously supported slabs are consistently the most economical due to
efficient load distribution and reduced bending moments, requiring less reinforcement.
For instance, a 15-foot continuously supported slab is about 92% cheaper than a
cantilever slab of the same length. Cantilever slabs, experiencing the highest bending
moments, are the most expensive option across all span lengths.
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