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ABSTRACT 
 

This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way 

reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the 

critical role of elitism in GA performance. Without elitism, the GA consistently failed to 

reach the target objective, with success rates often nearing zero across various crossover 

fractions. Incorporating elitism dramatically increased success rates, highlighting the 

importance of preserving high-performing individuals. With an optimal configuration of 0.3 

crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost 

of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to 

designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between 

5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and 

cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64 

scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost 

versus slab length diagrams illustrate the economic benefits of GA optimization. 
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1.  INTRODUCTION 
 

In an era marked by rapid urbanization and escalating demands on infrastructure, the 

construction industry confronts a pivotal challenge: the need to deliver structures that are not 

only safe and sustainable but also cost-effective. Reinforced concrete, a cornerstone material 
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in modern construction, is celebrated for its durability and versatility. Nevertheless, its 

utilization is often accompanied by significant material and labour costs. Consequently, 

optimizing the design of reinforced concrete structures and elements, such as one-way slabs, 

becomes essential for minimizing material waste and maximizing resource efficiency 

without compromising the structural integrity. This optimization is critical to ensure that 

infrastructure development keeps pace with urban growth while adhering to economic and 

environmental sustainability goals. 

The primary objective of an optimization algorithm is to either minimize the utilization of 

resources or to maximize the benefits obtained [1]. Optimization is defined as the process of 

identifying the most efficient solution within established constraints [2]. It involves 

determining the most advantageous outcome while adhering to a specific set of limitations.  

Reinforced concrete is a predominant material in the construction industry, esteemed for 

its extensive applicability and reliability. A paramount objective within this domain is to 

reduce the costs associated with reinforced concrete structures. Over recent decades, 

significant emphasis has been placed on optimizing the design of these structures to enhance 

cost-effectiveness. The pursuit of more economically viable and resource-efficient 

reinforced concrete constructions has spurred extensive research into various facets of 

design optimization. A critical focus area involves augmenting the efficiency of traditional 

design methodologies by integrating advanced optimization algorithms to identify the most 

optimal configurations for structural elements such as frames [3, 4], beams [5, 6], columns 

[7, 8], slabs [9, 10], retaining walls [11], and other structural elements. 

To demonstrate advancements in this area, various studies have employed a range of 

optimization techniques for cost-effective designs. For example, Kaveh and Shakouri 

Mahmud Abadi (2011) utilized the Harmony Search Algorithm to optimize slab formwork 

design. Inspired by musical harmony, this method aims to minimize costs while meeting 

constraints such as bending moments, shear forces, deflection limits, and compliance with 

code provisions. The study successfully identified optimal cross-sections and spacing for 

formwork elements like joists and stringers, resulting in significant cost reductions [12]. 

Kaveh and Behnam (2012) employed innovative physics-based algorithms, namely the 

Charged System Search (CSS) and the Enhanced Charged System Search (E-CSS), to 

optimize various floor systems, including composite slabs, waffle slabs, and concrete 

formwork, with an emphasis on minimizing costs. Their study compared the performance of 

CSS and E-CSS against the Improved Harmony Search algorithm, underscoring the potential 

advantages of CSS in achieving cost-effective solutions [9]. In another study, Kayabekir et 

al. applied multiple metaheuristic algorithms such as Harmony Search, Teaching-Learning-

Based Optimization (TLBO), Flower Pollination, and Jaya to optimize the dimensions of T-

beams in accordance with Eurocode regulations governing concrete design. Notably, the 

TLBO algorithm consistently yielded the most optimal T-beam dimensions among the 

evaluated methods, demonstrating its superior effectiveness for this specific optimization 

task [6].  Bekdas et al. (2022) used the Harmony Search algorithm to optimize reinforced 

concrete circular column dimensions, minimizing steel and concrete costs. Focusing on 

column diameter and steel area, they generated 3125 optimal designs. Using SHAP and 

ensemble learning, they analyzed variable impact and objective function relationships to 

develop high-performance machine learning models for structural design [13].   [
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Kaveh and Bijari (2014) utilized various metaheuristic algorithms, including Colliding 

Bodies Optimization (CBO) and Democratic Particle Swarm Optimization (DPSO), to 

minimize the construction costs of one-way reinforced concrete ribbed slabs. These 

algorithms were developed to address the premature convergence issues commonly 

associated with standard Particle Swarm Optimization (PSO). When compared to the 

Harmony Search algorithm, both CBO and DPSO demonstrated enhanced performance and 

faster convergence rates in the optimization process [10]. Ahmadi-Nedushan and Varaee 

(2009) applied a modified version of PSO algorithm to the optimal design of reinforced 

concrete earth-retaining walls, addressing dual objectives of minimizing both weight and 

cost [14].  

Habibi et al. (2016) applied the Lagrange Multiplier Method (LMM) to design cost-

effective singly and doubly reinforced rectangular concrete beams. Their objective function 

focused on minimizing the costs of concrete and steel materials while ensuring the beams 

met the ultimate flexural strength requirements as per the Iranian National Building 

Regulations (INBR9). The LMM enabled the derivation of closed-form solutions for optimal 

designs, which were graphically presented in the study. This approach effectively identified 

minimum cost designs without the need for iterative experimentation [15]. Shobeiri and 

Ahmadi-Nedushan (2019) used Bi-Directional Evolutionary Structural Optimization (BESO) 

to optimize 3D prestressed concrete beam layouts. Their study demonstrated BESO’s 

effectiveness in finding optimal topologies while considering prestressing stress, geometric 

discontinuities, height limits, and strut-and-tie models. BESO improved both design 

efficiency and material use. [16]. 

Olawale et al. (2020) used a genetic algorithm (GA) to optimize reinforced concrete 

waffle slab design for cost-effectiveness by minimizing material and formwork costs. Their 

optimized designs achieved a low steel ratio of 2.2% [17]. Afsal et al. (2020) conducted a 

critical review of reinforced concrete (RC) structural design optimization, addressing a gap 

in the literature by providing a comprehensive overview of computational design 

optimization research for RC structures. The review examines various objectives, 

components, strategies, and computational tools, offering detailed insights into integrating 

optimization strategies with computational tools for RC structural design. Interested readers 

can refer to this article to explore further applications of optimization in concrete structures 

[18]. 

To narrow the scope from general studies to more relevant research, the ensuing section 

investigates developments in the optimization of reinforced concrete one-way solid slabs. 

Designed to bear all applied loads through bending in a single direction, one-way slabs 

typically have a width-to-length ratio of two or more. Early studies by Brown (1975) and 

Brøndum-Nielsen (1987) utilized simplifying assumptions in their optimization approaches. 

Brown (1975) addressed the optimal cost design of one-way concrete slabs by formulating it 

as a single-variable optimization problem aimed at determining the optimal thickness for 

uniformly loaded, simply supported slabs. This study considered only flexural deformations, 

relying on other simplifying assumptions to streamline the analysis [19]. Brøndum-Nielsen 

(1987) proposed a method to minimize reinforcement costs across various RC structures, 

including shells, folded plates, walls, and slabs. The approach involved minimizing the sum 

of forces within the steel reinforcement in two perpendicular directions. While the study 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.4

.6
10

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 g

ti.
iu

st
.a

c.
ir

 o
n 

20
25

-1
1-

22
 ]

 

                             3 / 22

http://dx.doi.org/10.22068/ijoce.2024.14.4.610
https://gti.iust.ac.ir/ijoce/article-1-610-en.html


B. Ahmadi-Nedushan and A. M. Almaleeh 
 

576 

provided an academic example, it did not incorporate code provisions into the optimization 

process [20].  

While the methodologies developed by Traum and Brøndum-Nielsen were groundbreaking 

for their time, they inherently possess limitations due to their simplified frameworks. In 

2005, Ahmadkhanlou and Adeli introduced a neural dynamics model aligned with the 

American Concrete Institute (ACI) code, marking a significant advancement toward 

practical design optimization [21]. Their research focused on the optimal cost design of 

reinforced concrete (RC) slabs in accordance with ACI 1999 code provisions. They 

formulated the optimization problem as a mixed integer-discrete variable model, 

incorporating three primary design variables: slab thickness, steel bar diameter, and bar 

spacing. 

Building upon this foundation, Ahmadi-Nedushan and Varaee (2011) investigated the 

cost optimization of one-way concrete slabs using PSO, adhering to ACI 318-M08 code 

requirements. Recognizing that PSO is typically suited for unconstrained problems, they 

adapted the algorithm with a multi-stage dynamic penalty function to effectively manage 

constraints. Their study presented cost optimization results for four slabs under varying 

support conditions, comparing these outcomes to existing methods. The authors concluded 

that PSO demonstrates significant promise as a method for optimizing structural elements 

[14]. In 2017, Ghandi et al. employed the cuckoo optimization algorithm for the cost 

optimization of both one-way and two-way RC slabs, in compliance with ACI 318-99 

standards [22]. The objective function aimed to minimize the total cost of the slabs, 

encompassing both concrete and reinforcing steel expenses. This study contributed to the 

existing literature by evaluating the cuckoo optimization algorithm within the context of 

structural optimization, seeking to enhance cost efficiency in concrete slab design. The 

discussion included comparisons with previous optimization algorithms, such as PSO, 

highlighting the relative strengths and potential applications of the cuckoo method. 

Sedaghat Shayegan (2022) introduced a cost-minimization approach for designing 

reinforced concrete (RC) slabs by leveraging a hybrid metaheuristic algorithm [23]. This 

methodology employs the Mouthbrooding Fish Algorithm (MFA) as the primary 

optimization engine, capitalizing on its proficiency in efficiently exploring the design space. 

To further enhance performance and mitigate the risk of converging to local optima, the 

algorithm integrates the advantageous properties of the Colliding Bodies Optimization 

(CBO) method. In this study, continuous variables were utilized to represent the area of 

reinforcement bars (rebars). However, this approach overlooks a critical practical aspect of 

construction engineering: rebars are available only in discrete, standardized sizes. As a 

result, the model’s outputs may not translate effectively to real-world applications, limiting 

its utility in practical construction projects where material availability and standardized 

dimensions dictate design and execution. 

Although previous studies have advanced the field of structural optimization, they have 

predominantly relied on outdated building code provisions. The latest edition of the 

American Concrete Institute’s building code (ACI 318-19) introduces updated design 

requirements for reinforced concrete structures, directly influencing cost-optimization 

strategies. To date, no research has investigated the optimization of one-way slabs using the 

provisions of ACI 318-19. This study addresses this gap by employing a GA to develop 

cost-effective designs that comply with the latest code requirements. 
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Building upon earlier research, this article explores how a Eliticist GA-based 

optimization, aligned with ACI 318-19, can achieve cost-optimized designs for one-way 

slabs under varying support conditions. The optimization process considers key design 

variables, including slab thickness, rebar diameter, and spacing, with the objective of 

minimizing total material costs while adhering to the code’s specifications. Additionally, this 

work examines the impact of the updated constraints in ACI 318-19 on cost-effectiveness by 

comparing them to earlier versions (ACI 318-99 & 08), thereby highlighting how the latest 

code revisions influence optimal design costs. 

The article is structured as follows: Section 2 provides a comprehensive analysis of the 

optimization problems, detailing the design variables, objective function, and constraints 

imposed by ACI 318-19. Section 3 describes the Genetic Algorithm (GA) approach used for 

optimization. It explains the core GA principles of selection, crossover, and mutation, and 

how these operators guide the search for optimal solutions. The section also details the 

implementation in Matlab, emphasizing the handling of discrete variables and constraints 

using the Augmented Lagrangian Barrier Algorithm. Section 4 presents the optimization 

problems, focusing on minimizing material costs for four types of one-way reinforced 

concrete slabs with varying support conditions, subject to ACI 318-19 code constraints. It 

details the optimization process, including a sensitivity analysis of the genetic algorithm 

(GA) parameters, compares the GA results with existing literature, analyzes constraint 

values at optimal design points, and investigates the influence of span length on material 

costs. Finally, Section 5 concludes the article by summarizing the key findings and their 

implications. 

 

 

2. THE DEFINITION OF OPTIMIZATION PROBLEM 
 

An optimization problem is defined by several critical components: design variables, the 

objective function and constraints. Design variables are the parameters that can be adjusted 

or controlled within the optimization process. In the context of optimizing one-way slabs, 

these variables may include slab thickness, steel bar spacing, bar diameter, concrete 

compressive strength, and steel reinforcement yield strength. Each design variable 

corresponds to a specific aspect of the slab’s geometry or material properties, which can be 

manipulated to achieve an optimal design. The objective function often referred to as the 

cost function in minimization problems, is a mathematical expression that quantifies the cost 

or performance of various design configurations.  

In this study, the objective function primarily aims to minimize the total material cost, 

encompassing expenses related to concrete and steel reinforcement. The objective is to 

identify the combination of design variables that results in the lowest possible cost while 

satisfying all necessary requirements. Constraints are the mandatory conditions that a design 

must satisfy to be deemed feasible. For the optimization of one-way slabs, these constraints 

are derived from the ACI 318-19 provisions [24]. They encompass requirements for 

reinforcement placement, applied loads, strength reduction factors, and other structural 

specifications. Constraints ensure that the optimized design not only achieves cost 

minimization but also adheres to the safety and performance standards established by 

engineering codes. 
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2.1 Design Variables 

The optimization process is centered around three primary design variables: slab 

thickness (h), reinforcement bar spacing (s), and the diameter of reinforcing steel bars (d). 

The GA is employed to identify cost-effective design configurations under four distinct slab 

support conditions: simply supported, one end continuous, both ends continuous, and 

cantilevered. These varying support conditions introduce different structural behaviors and 

constraints, necessitating tailored optimization strategies to achieve the most efficient 

designs. 

Fig. 1 illustrates the standard cross-sectional geometry of a one-way slab, highlighting the 

key design variables involved in this optimization study—slab thickness (h) and 

reinforcement bar spacing (s). Both slab thickness (h) and reinforcement bar spacing (s) are 

treated as discrete variables within the optimization framework, meaning they are adjusted in 

fixed increments that reflect standard construction practices and material availability. 

Specifically, slab thickness may vary within a predefined range to accommodate different 

load and span requirements, while bar spacing is selected from standardized intervals to 

ensure uniform distribution of reinforcement and adherence to structural standards. 

 
Figure 1: Typical geometry of one-way solid slab cross section 

 

Similarly, the diameter of reinforcing steel bars (d) is considered a discrete variable, 

with eleven standardized options corresponding to bar sizes ranging from #3 to #18. These 

diameters span from 0.375 inches to 2.257 inches, providing a range of reinforcement 

options that balance structural strength with material cost. By constraining these variables to 

standardized values, the optimization process remains practical and aligned with real-world 

construction constraints. 

 
2.2 Objective Function 

The optimal design of a concrete slab is achieved by minimizing the total costs of 

materials, summing the expenses related to concrete and steel reinforcements. The objective 

function is structured to consider both the volume of concrete and the weight of steel 

reinforcement, with the goal to determine optimal values for the slab thickness (h), the steel 

bar diameter (𝑑𝑏), and the bar spacing (s) that lead to cost minimization.This cost function 

can be expressed as: 

 

Minimize 𝑓(ℎ, 𝑑𝑏 , 𝑠) = 𝑃𝑐 + 𝑃𝑠 = 𝑉𝑐𝐶𝑐 + 𝑊𝑠𝐶𝑟 (1) 

 

 
 
 
 
 
 
 
 
 

Fig. 1. Typical geometry of one-way slab cross-section 
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Subject to 

 

𝑔𝑖(ℎ, 𝑑𝑏 , 𝑠) ≤ 0, 𝑖 = 1, … , 𝑚 (2) 

 

where f  denotes the cost function in monetary units (e.g., USD), 𝑉𝑐 (measured in in³) 

represents the volume of concrete used, 𝑃𝑐 is the cost associated with concrete (in USD), 𝑃𝑠 

is the cost associated with steel reinforcement (in USD), 𝐶𝑐 (measured in USD/in³) is the 

cost per unit volume of concrete, 𝑊𝑠 (measured in pound, lb) is the weight of steel 

reinforcement, and 𝐶𝑠 (measured in USD/lb) represents the cost per unit weight of steel 

reinforcement. As per previous studies, the cost of formwork and labor are not included [21, 

22]. 

 

The inequality constraints (𝑔𝑖ℎ,𝑏,𝑠≤0,,𝑖=1,…,𝑚) represent various design constraints that 

must be satisfied to ensure the structural integrity and compliance with design codes. The 

concrete cost is given by: 

 
𝑃𝑐 = 𝐿   𝑏   ℎ  𝐶𝑐 (3) 

 

where L, b, and h are the length, width, and thickness of the slab (all in inches), and 𝑃𝑐 is 

the cost associated with concrete (in USD). 

The steel cost is determined by: 

 
𝑃𝑠 =𝛾𝑠  𝐿  𝐴𝑠  𝐶𝑠 (4) 

 
Here, 𝛾𝑠 is the unit weight of steel (kg/m³), 𝐴𝑠  is the cross-sectional area of the steel bars 

(in²), and L is the span length (in). The cross-sectional area of the steel reinforcement As is 

computed as: 

𝐴𝑠 =  
𝜋𝑑𝑏

2

4
 
𝑏

𝑠
 

(5) 

 

 

with 𝑑𝑏 is the diameter of the steel bars (in) and s is the spacing between the bars (in).  

 
2.3 Design Constraints 

The design constraints (𝑔𝑖(ℎ, 𝑑𝑏, 𝑠) ≤ 0, , 𝑖 = 1, … , 𝑚) are crucial in optimization 

problems as they establish the limits that any solution must satisfy to be viable. These 

constraints define the feasible search space and are categorized into two primary aspects of 

design evaluation: strength (focusing on flexural and shear capacities) and serviceability 

(emphasizing reinforcement limitations and deflection norms) in accordance with ACI 318-

19 guidelines [24]. 

 
2.3.1 Flexural strength constraint 

A fundamental constraint is ensuring adequate flexural strength, which is the slab’s 

ability to resist bending moments. The nominal flexural strength, denoted as ∅𝑀𝑛, must 
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exceed the ultimate design moment Mᵤ. This requirement can be expressed as the following 

constraint 

𝑔1(𝑥) =
𝑀𝑢

∅𝑀𝑛
− 1 ≤ 0    ∅ = 0.9 (6) 

 

The ultimate design moment 𝑀𝑢 is determined using: 

 
𝑀𝑢 = 𝑘. 𝑤. 𝐿𝑛

2   (7) 

where 𝐿𝑛
  represents the clear span length, k is the bending moment coefficient, and w 

denotes the factored distributed load. The bending moment coefficient is determined based 

on the type of slab support conditions. Bending moment coefficients, dependent on the type 

of slab support conditions, are enumerated in Table 1.  

 
Table 1: Bending moment coefficients for different one-way slabs 

Simply Supported One end continuous Both ends continuous Cantilever 

1/8 1/10 1/11 1/2 

 

The factored uniform distributed load 𝑤 is calculated as:  

 
𝑤 = 1.2  (𝐷𝐿  𝑏 + 𝐷𝐿𝑠) + 1.6  𝐿𝐿  𝑏 (8) 

 

Here, DL signifies the dead load excluding the self-weight of the slab, LL is the live load. 

DLs the slab’s self-weight, calculated by:  

 
𝐷𝐿𝑠 = (ℎ  𝑏 − 𝐴𝑠)  𝑤𝑐 + 𝐴𝑠  𝑤𝑠 (9) 

 

In this equation, wc is the weight of concrete per unit volume. The nominal flexural 

moment, ∅𝑀𝑛 is described as follows: 

 

𝑀𝑛 = 𝐴𝑠𝑓𝑦 (𝑑 −
𝑎

2
) 

(10) 

 

The yield strength of the reinforcing steel bars is symbolized by 𝑓𝑦 , and a, is depth of 

equivalent rectangular stress block, can be determined using as: 

 

𝑎 =
𝐴𝑠𝑓𝑦

0.85𝑓𝑐
′. 𝑏

 
(11) 

 
where 𝑓𝑐

′ defines the specified compressive strength of concrete. 

 

2.3.2 Shear constraint 

As detailed in Eq. 12, the constraint for shear strength requires that the ultimate factored 

shear force, 𝑉𝑢, should not exceed the nominal one-way shear strength, ∅𝑉𝑛: 

  

g2(𝑥) =
𝑉𝑢

∅𝑉𝑛
− 1 ≤ 0        ∅ = 0.75 (12) 
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𝑉𝑢 , the ultimate factored shear force is calculated as:  

 

𝑉𝑢 = 𝑘𝑣

𝑤𝐿𝑛

2
 (13) 

where 𝑘𝑣 is the shear force coefficient, which is determined based on slab support. The 

nominal one-way shear strength 𝑉𝑐 is outlined as: 

𝑉𝑐 = 2𝜆√𝑓𝑐
′𝑏𝑑  (14) 

 
where 𝜆 is a modification factor reflecting the mechanical properties of lightweight 

concrete relative to normal-weight concrete of the same compressive strength, which is set 

to 1.0 for this scenario. The shear coefficients for different one-way slabs (Table 2) reveal 

the variations in shear resistance due to different slab support conditions. 

 
Table 2: Shear coefficient for different one-way slabs 

Simply Supported One end continuous Both ends continuous Cantilever 

1 1.15 1 2 

 
2.3.3 Serviceability constraints 

Serviceability constraints ensure that concrete structures perform their intended function 

over time while maintaining durability and appearance. A critical aspect of serviceability is 

controlling cracking and ensuring sufficient ductility, which are directly related to the strain 

compatibility between the concrete and the reinforcing steel. This relationship, depicted in 

Fig. 2, illustrates the tensile strain behavior of both materials under load. Understanding and 

managing this strain compatibility is essential for the long-term durability of the structure. 

To ensure this, design requirements include limitations on reinforcement tensile strain (𝜀𝑡), 

reinforcement area, and bar spacing. The tension-controlled criterion for the tensile strain of 

reinforcing bars (Eq. 15) ensures sufficient ductility: 

 
𝜀𝑡 ≥ 𝜀𝑡𝑦 + 0.003 (15) 

 

where  

 

𝜀𝑡𝑦 =
𝑓𝑦

𝐸
 (16) 

 
The ACI code provides a framework to calculate serviceability requirements. Equations 

17 through 20 (g3 to g6) define the serviceability constraints, such as the strain compatibility 

condition (Eq. 17, g3), which ensures that the actual strain in the tension steel (𝜀𝑡) surpasses 

the yield strain plus an additional strain component. The minimum area of reinforcement 

(Eq. 18, g4), as well as the minimum (Eq. 19, g5) and maximum (Eq. 20, g6) spacing of the 

bars, are specified to control cracking and and maintain the structural integrity of the one-

way slab. 
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Figure 2: Tensile strain of concrete and reinforcing steel bars 

 

g3(𝑥) =
𝜀𝑡𝑦  +  0.003

𝜀𝑡
− 1 ≤  0 (17) 

 

g4(𝑥) = 1 −
𝐴𝑠

𝐴𝑠𝑚𝑖𝑛
≤ 0  (18) 

 

g5(x) =
smin

s
− 1 ≤ 0  (19) 

 

g6(𝑥) =
𝑠

𝑠𝑚𝑎𝑥
− 1 ≤ 0  (20) 

 
𝛽1 can be calculated as: 

 

𝛽1 =  {

0.85                                                                𝑓𝑜𝑟 𝑓𝑐
′ ≤ 4000 𝑝𝑠𝑖 

0.85 − 0.05 (
𝑓𝑐

′ − 4000

1000
) ≥ 0.65          𝑓𝑜𝑟 𝑓𝑐

′ > 4000 𝑝𝑠𝑖 
 (21) 

 
The minimum quantity of flexural reinforcement required for a safe, and serviceable 

design is specified through: 

 
𝐴𝑠 𝑚𝑖𝑛 = 0.0018 𝑏ℎ (22) 

 
The minimum and maximum values of bar spacing are defined as follows:  

 

𝑠𝑚𝑖𝑛 = max (1′′, 𝑑𝑏 ,
4

3
𝑑𝑎𝑔𝑔) (23) 

 
𝑠𝑚𝑎𝑥 = min(18′′, 3h) (24) 

 

2.3.4 Deflection constraints 

Deflection constraints ensure that slabs maintain structural integrity by controlling 

immediate and long-term deformations under service loads. The relationship between slab 

thickness and deflection control is emphasized by minimum thickness requirements in Table 

𝜀𝑐 = 0.003 

 

𝜀𝑡 ≥ 𝜀𝑡𝑦 + 0.003 

 

𝑐 

 
𝑑 − 𝑐 
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3, adjusted by support conditions and concrete type as per Equation (25). For one-way slab 

designs, deflection criteria require that slab thickness h meets or exceeds the minimum 

thickness ℎmin: 

g7(𝑥) =
ℎ𝑚𝑖𝑛

ℎ
− 1 ≤ 0  (25) 

 
Here, ℎmin values correlate with the support conditions of the one-way slabs as specified 

in Table 3. Adjustment factors for slab thickness in Eq. 25 are defined as follows: 

 

𝛼1 = 0.4 +
𝑓𝑦

100,000
 .  for normal weight concrete

𝛼2 = max(1.65 − 0.005 𝑤𝑐. 1.09) , for lightweight concrete 
}   (26) 

 

Table 3: Minimum Thickness Values for One-Way Solid Slabs 

Simply Supported One end continuous Both ends continuous Cantilever 

L/20 L/24 L/28 L/10 

 
For normal weight concrete, 𝛼1 adjusts the minimum thickness based on the yield 

strength (𝑓𝑦) of the reinforcing steel. The 𝛼2 factor for lightweight concrete accounts for the 

unit weight (𝑤𝑐), of concrete, addressing variations in stiffness and mass inherent to 

different concrete materials. This adjustment is critical for deflection control, ensuring that 

lightweight concrete slabs meet serviceability requirements while maintaining safety and 

functionality. 

The ACI 318-19 code introduced several key changes compared to previous editions, 

particularly ACI 318-99, impacting how reinforced concrete structures are designed. These 

modifications reflect advancements in understanding concrete behavior and aim to improve 

structural performance. The constraints specified by ACI 318-19 differ from those in ACI 

318-99 in several key aspects: 

1. Shear Strength Reduction Factor (φ): Reduced from 0.85 to 0.75. 

2. Maximum Reinforcement: Now determined by the maximum strain in the tension 

reinforcement instead of the reinforcement ratio. 

3. Minimum Area of Reinforcement: Unified for all concrete classes, regardless of 

compressive strength. 

4. Ultimate Strain Limit: Changed from a fixed value of 0.004 to a function of yield 

strength and modulus of elasticity of steel. 

5. Shear Strength Reduction Factor (𝜆): The reduction factor for shear strength (𝜆) has 

also been updated in the ACI 318-19 code. 

These updates enhance the safety, durability, and serviceability of concrete structures, 

ensuring that design criteria align with modern construction practices and materials. 

 

 

3. GENETIC ALGORITHM APPROACH FOR OPTIMIZATION 
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GA is a population-based stochastic optimization method inspired by Darwinian 

evolutionary principles. It utilizes operators such as selection, crossover, and mutation to 

emulate natural selection and maintain genetic diversity within the population [25].  

The GA process begins with an initial population of potential solutions, which evolves over 

successive generations. During each generation, the natural selection operator selects parent 

solutions based on their fitness, ensuring that higher-quality individuals have a greater 

probability of passing their genes to the next generation. The crossover operator then 

combines pairs of parents to produce offspring, promoting the exploration of new regions in 

the solution space by mixing genetic information. To preserve genetic diversity and prevent 

premature convergence, the mutation operator introduces random alterations to the 

offspring’s genes. 

After these genetic operations, the new population is evaluated against a predefined stopping 

criterion, such as reaching a maximum number of generations or achieving a satisfactory 

fitness level. This iterative process continues until an optimal or near-optimal solution is 

identified. As one of the pioneering population-based stochastic algorithms, GA effectively 

navigates complex discrete optimization problems by balancing exploration and exploitation 

within the search space [26]. Despite being a traditional algorithm, GAs remain effectively 

utilized in numerous structural engineering applications, as evidenced by recent research 

[27-32]. 

In this study, the implementation of the GA was conducted using Matlab’s Global 

Optimization Toolbox [33]. To accurately represent the optimization problem, GA treats the 

discrete variables as integer variables. A mapping function then associates these integer 

representations with the actual discrete variables. Constraint handling is facilitated via the 

Augmented Lagrangian Barrier Algorithm, which incorporates both augmented terms and 

barrier functions into the objective function, penalizing constraint violations and integrating 

the constraints into GA’s evolutionary process. Solutions that fail to meet constraints are 

penalized, lowering their fitness scores and reducing their likelihood of selection for 

subsequent generations [34]. 

The unique characteristic of the GA for integer programming lies in its adaptation of the 

standard evolutionary operators, which include creation, crossover (recombination), and 

mutation, to preserve the integer nature of variables. This adoptation ensures that the 

generated solutions remain feasible in the context of discrete optimization problems. During 

the creation phase, the algorithm is specifically designed to produce integer values rather 

than random real numbers. In the crossover process, offspring derived from parent solutions 

are constrained to maintain integer values. Similarly, mutation involves altering a variable 

by a discrete amount instead of a continuous shift. These modifications uphold the integrity 

of integer variables across generations, allowing the GA to effectively explore the discrete 

solution space. The integer-specific evolutionary functions are intentionally crafted to 

respect the discrete characteristics of the problem, thereby facilitating the discovery of 

solutions that are pertinent to real-world discrete optimization challenges [34]. 

 

 

4. OPTIMIZATION PROBLEMS 
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In this study, we focus on minimizing the overall material costs for four distinct types of 

one-way reinforced concrete slabs, each exhibiting different support conditions. The 

optimization process adheres to specific constraints as mandated by the ACI 318-19 

provisions. The variables under consideration include slab thickness (h), steel bar spacing 

(s), and bar diameter (𝑑𝑏). Specifically, slab thickness ranges from 5 to 20 inches in 0.25-

inch increments, steel bar spacing varies from 1 to 20 inches in 0.25-inch increments, and 

bar diameter is selected from a predefined set of values measured in square inches. 

 

Common parameters for four optimization problems are listed below: 

• Slab length (L): 156 inches 

• Column width: 12 inches 

• Dead load: 0.0694 lb/in² 

• Live load: 0.278 lb/in² 

• Concrete unit weight: 0.283 lb/in³ 

• Steel unit weight: 0.0868 lb/in³ 

• Modulus of elasticity: 29,000,000 psi 

• The cost per unit volume of concrete (𝐶𝑐): 0.0016 $/in³ 

• The cost per unit weight of steel reinforcement (𝐶𝑠): 0.6486 $/lb  

 

The primary objective of this study is to assess the efficiency and robustness of the 

genetic algorithm (GA) when applied to one-way solid slabs under varying support 

conditions. The GA is employed to identify the most cost-effective design that complies 

with the ACI 318-19 code, taking into account the different support conditions across the 

cases. The optimization outcomes are subsequently compared to findings in existing 

literature [14, 21, 22], which underscores the GA’s efficacy in designing reinforced concrete 

structures. This is particularly relevant given that the optimal designs referenced in the 

literature were derived using previous editions of ACI provisions, highlighting the impact of 

evolving code provisions on optimal cost solutions. 

 
4.1 Configuration and Sensitivity Analysis of GA Parameters 

The optimization problems were addressed using the GA, with parameters meticulously 

determined through a sensitivity analysis performed on case 1 (a simply supported solid 

slab). This analysis aimed to pinpoint the most effective GA settings for achieving optimal 

performance. The maximum number of function evaluations (NFEs) was capped at 4000 for 

all optimization problems to limit computational expense. The algorithm terminates upon 

reaching this limit.A population size of 60 individuals was maintained to promote a diverse 

pool of potential solutions. MATLAB scripts were developed to systematically explore and 

identify the optimal crossover fraction and elite percentage. The crossover fraction was 

varied from 0.05 to 0.95 in increments of 0.1, and the elite percentage from 0 to 0.6 in 

increments of 0.05, resulting in a total of 117 distinct optimization runs. 

Each parameter combination was rigorously tested over 50 independent runs. The success 

rate for each configuration, defined as the percentage of runs achieving a target value of 

24.91, is visualized in both a surface plot (Fig. 3) and a heatmap (Fig. 4). The analysis 

clearly shows that including elitism in the genetic algorithm is essential. Without elitism (an 
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elite percentage of 0), success rates drop sharply, often close to zero, regardless of the 

crossover fraction used. 

This underscores the essential role of preserving top-performing individuals from each 

generation to guide the search process effectively. Conversely, increasing the elite 

percentage demonstrably improves the success rate, highlighting the benefit of leveraging 

the genetic information contained within these high-performing individuals. For instance, at 

a crossover fraction of 0.2, increasing the elite percentage from 0 to just 0.05 boosts the 

success rate from a meager 10% to a substantial 84% (See Fig. 4). 

 

 
Figure 3: Surface plot of success rate versus Cross over fraction and Elite percentages 

 

 
Figure 4: Heatmap of success rate versus Cross over fraction and Elite percentages 
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Analysis identified an optimal configuration (crossover fraction: 0.3, elite percentage: 

0.45) achieving a 92% success rate (Fig. 4). For the simply supported one-way slab (Case 1), 

46 of 50 runs reached the optimal cost function (24.91), representing a 92% success rate 

(Fig. 5). With a population size of 60, this configuration retains 27 elite individuals. The 

maximum iteration count was set to 120 to ensure that the primary termination criterion was 

the NFE limit rather than a premature iteration cutoff. This approach provides ample 

opportunity for convergence while mitigating excessive runtimes. The convergence histories 

of all 50 runs for Case 1, corresponding to a simply supported one-way slab, are depicted in 

Fig. 6. 

For optimization of all problems in this article, a constraint tolerance of 1e-05 was 

implemented to ensure that the solutions strictly adhere to the defined constraints. The 

crossover fraction is set at 0.3, meaning that 30% of the population undergoes crossover 

operations, thereby promoting genetic diversity and enhancing the exploration of the 

solution space. Additionally, to ensure the reliability of the results, the GA was 

independently executed 50 times for each optimization problem, with the best outcomes 

from these runs being reported. 

 

 
Figure 5: Best costs across 50 runs for case 1 (simply supported one-way slab) 

 

4.2 Comparative Analysis of GA-Optimized Slab Designs Under Various Support Conditions 

Table 5 presents a comparative analysis of optimal designs generated by the GA and 

those documented in existing literature using previous editions of ACI provisions. The 

selected design problems have been previously explored by several researchers. 

Ahmadkhanlou and Adeli  employed a neural dynamics model [21], while Ahmadi-

Nedushan and Varaee utilized Particle Swarm Optimization (PSO) [14] . Ghandi et al. 

implemented a Cuckoo Search algorithm [22].  Although Sedghadat Shyegan [23] also 

investigated the optimization of reinforced concrete slabs, their methodology employed a 

hybrid mouthbrooding fish algorithm with continuous variables representing rebar areas. 
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This approach deviates from practical construction engineering constraints, where rebar 

sizes are inherently discrete and standardized. Consequently, incorporating their results into 

the comparative analysis would introduce inconsistencies and reduce the relevance of the 

comparison. Therefore, their findings are excluded to maintain the integrity and applicability 

of the comparative evaluation 

The results presented in Table 4 demonstrate a clear trend of cost reduction in reinforced 

concrete slab design when using a Genetic Algorithm (GA) optimization approach, 

particularly when combined with the latest ACI 318-19 code provisions. Comparing the 

costs across the different ACI code years and the GA-optimized results reveals the 

magnitude of this improvement. 

 

 
Figure 6: Convergence histories of all 50 runs for case 1 (simply supported one-way slab) 

 
In Case 1, while previous studies using older ACI codes yielded costs clustered around 

26.45, the GA-driven design using ACI 318-19 achieved a cost of $24.908, a reduction of 

approximately 6-7%. In Case 2, while previous studies using older ACI codes yielded costs 

of 22.76, 22.78 and 22.98, the GA-driven design using ACI 318-19 achieved a cost of 

$24.908, a reduction of approximately 8-9%. In Case 3 the GA-driven design results in a 

cost of $20.316, which is marginally lower than the costs associated with ACI-2008 

provisions ($20.64).  

The most notable difference is observed in Case 4. Previous studies utilizing older ACI 

codes reported costs between 59.31and 60.22. The GA approach with ACI 318-19 achieves 

a significantly lower cost of $55.015, representing a reduction of roughly 7-9%. This 

noteworthy cost saving demonstrates the power of the GA to exploit the updated code 

provisions and identify a significantly more efficient design. Specifically, while the slab 

thickness (h) and bar diameter (𝑑𝑏) are similar across the studies, the GA identified a 

markedly different reinforcing bar spacing (s = 12.0 in) compared to previous studies (s = 2 

in, 9.5 in, and 12.5 in. 
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These findings collectively emphasize the synergistic benefits of using GAs in 

conjunction with updated building codes. The GA’s ability to explore a wider design space 

and exploit the nuances of the latest code provisions leads to significant cost savings and 

more efficient structural designs. 
 

4.3 Analysis of Constraint Values at Optimum Design Points 

    Table 5 presents the values of various constraints at the optimum design points for each 

case. The value of constraint 𝑔1, representing flexural strength, consistently approaches zero 

across all cases. This indicates that 𝑔1 is an active constraint for all designs, signifying that 

the bending moment capacity is the primary governing factor. Specifically, in cases 1, 2, and 

4, exhibits values of -0.006, -0.001, and -0.006, respectively. 
 

Table 4: Results of GA for Slabs with different support conditions 

Design 

Case 

Design 

variables 

ACI 318 – 99 

 [21] 

ACI 318 – 08 

[14] 

ACI 318 - 99 

[22] 

ACI 318 – 19 

This article 

 

(1) 

h (in) 6.75 6.25 6.25 6.25 

s (in) 6.5 9 14.5 6.5 

𝑑𝑏 (in) 0.375 0.5 0.625 0.375 

Cost ($) 26.45 26.57 26.36 24.908 

(2) 

h (in) 5.57 5.25 5.25 5.25 

s (in) 7 5.5 10 7.25 

𝑑𝑏 (in) 0.375 0.375 0.5 0.375 

Cost ($) 22.98 22.76 22.78 21.253 

(3) 

h (in) 4.75 4.5 4.5 5.0 

s (in) 7 5.5 10 7.5 

𝑑𝑏 (in) 0.375 0.375 0.5 0.375 

Cost ($) 19.93 20.64 20.5 20.316 

(4) 

h (in) 13.5 12.5 12.5 12.5 

s (in) 2 12.5 9.5 12.0 

𝑑𝑏 (in) 0.375 0.625 0.875 0.875 

Cost ($) 60.22 59.31 59.96 55.015 

 

 
Table 5: The values of the constraints at optimum points for slabs with  

different support conditions 

Design case 
The values of the constraints 

g1 g2 g3 g4 g5 g6 g7 

1 -0.006 -0.664 -0.908 -0.510 -0.846 -0.639 -0.002 

2 -0.001 -0.581 -0.898 -0.612 -0.862 -0.540 -0.010 

3 -0.026 -0.626 -0.895 -0.636 -0.867 -0.500 -0.109 

4 -0.006 -0.563 -0.876 -1.182 -0.556 -0.875 -0.002 

 

    In contrast, case 3 records a 𝑔1 value of -0.026, which, while still indicating compliance, 

is less proximate to zero compared to the other cases. This deviation arises from the 
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utilization of discrete design variables, which restricts the optimization process to predefined 

values, thereby limiting the ability to achieve a 𝑔1 value closer to zero without 

compromising structural integrity. The constraint 𝑔7 ,pertaining to deflection, is marginally 

close to zero in cases 1, 2, and 4, with values of -0.002, -0.010, and -0.002, respectively. 

This proximity indicates that 𝑔7 is also an active constraint in these cases, suggesting that 

deflection limitations play a significant role alongside flexural strength in influencing the 

design. However, in case 3, 𝑔7 is considerably further from zero (-0.109), implying that 

deflection constraints are less restrictive in this scenario compared to the others. This 

discrepancy can be attributed to the discrete nature of the design variables employed, which 

constrains the optimization process and affects the interplay between various structural 

constraints. The remaining constraints (g2 to g6) consistently exhibit negative values across 

all cases, indicating compliance with the respective limitations. These constraints encompass 

various aspects of structural performance, such as shear strength, serviceability. The uniform 

compliance across these constraints underscores the robustness of the optimization approach 

in adhering to multifaceted structural requirements 

 
4.4 Sensitivity Analysis: Influence of Span Length on Optimal Material Costs 

To understand the impact of span length and support conditions on the optimal material 

costs of reinforced concrete slabs, a sensitivity analysis was performed. Sixteen span lengths 

ranging from 5 to 20 feet in one-foot increments were analyzed, along with four support 

conditions: Case 1: Simply Supported; Case 2: One End Fixed, One End Simply Supported; 

Case 3: Both Ends Fixed; and Case 4: Cantilever. This resulted in 64 optimization problems 

being solved using GA. 

Fig. 7 illustrates the relationship between span length and optimal total material cost for 

each support condition. For shorter spans (less than 10 feet), optimal costs remain relatively 

stable. As span length increases beyond 10 feet, costs rise significantly, with the rate of 

increase varying depending on the support condition. Slabs with both ends fixed (Case 3) 

consistently demonstrated the lowest optimal material costs, approximately 92% lower than 

the cantilever case (Case 4) for a 15-foot span. Conversely, cantilever slabs exhibited the 

highest costs due to the increased bending moments they must resist. These results 

underscore the importance of optimizing support conditions early in the design phase, 

particularly for longer spans, to achieve cost-effective reinforced concrete slab designs 
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Figure 7: Influence of Span Length and Support Conditions on Optimal Material Costs  

for One-Way Reinforced Concrete Slabs 

 

5. CONCLUSIONS 
 

This study demonstrates the effectiveness of an elitist GA for optimizing the material 

cost of one-way reinforced concrete slabs. By adjusting key design variables: slab 

thickness, rebar diameter, and rebar spacing, the GA minimized costs for four support 

conditions: simply supported, one-end continuous, both-ends continuous, and 

cantilevered. Compared to designs based on ACI 318-99 and ACI 318-08, the GA 

achieved material cost reductions of between 5.8% to 8.6% for the different types of 

supports, all while adhering to the latest ACI 318-19 code requirements. 

The GA’s robustness is highlighted by its consistent compliance with flexural strength 

and deflection limits across all slab types. The optimized designs maintained structural 

integrity while achieving superior cost-effectiveness compared to previous standards. 

This integration of GA with ACI 318-19 ensures both material savings and adherence to 

stringent safety and performance criteria. 

Careful tuning of the GA parameters, specifically the crossover fraction and elite 

percentage, was crucial for optimization success. An analysis of 117 experimental runs 

demonstrated the significant influence of these parameters on algorithm performance. 

Without elitism (elite percentage = 0), increasing the crossover fraction worsened 

performance, indicating difficulty in retaining good solutions, with success rates often 

dropping to 0%. Introducing elitism dramatically improved optimization by preserving 

top-performing individuals from each generation, stabilizing the search and increasing 

the likelihood of finding optimal or near-optimal solutions. A crossover fraction of 0.3 

combined with an elite percentage of 0.45 yielded the highest observed success rate of 

92%. 

A comprehensive sensitivity analysis investigated the impact of slab length (from 5 to 

20 feet in one-foot increments) across all support conditions, resulting in 64 unique 
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optimization scenarios. The resulting cost versus slab length diagrams reveal a clear 

trend of increasing material cost with increasing slab length. Continuously supported 

slabs benefited from improved load distribution, leading to lower material costs as slab 

length increased. Conversely, cantilevered slabs exhibited higher material costs due to 

the increased reinforcement needed to manage larger bending moments over longer 

spans. 

Material costs stay relatively constant for slabs shorter than about 10 feet. Beyond this 

length, costs increase significantly, with the rate of increase depending on support 

conditions. Continuously supported slabs are consistently the most economical due to 

efficient load distribution and reduced bending moments, requiring less reinforcement. 

For instance, a 15-foot continuously supported slab is about 92% cheaper than a 

cantilever slab of the same length. Cantilever slabs, experiencing the highest bending 

moments, are the most expensive option across all span lengths. 
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