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ABSTRACT

Predicting the bearing capability (qrs) of geogrid-reinforced stone columns poses a
significant challenge due to variations in soil and rock parameters across different locations.
The behavior of soil and rock in one region cannot be generalized to other regions.
Therefore, accurately predicting qrs requires a complex and stable nonlinear equation that
accounts for the complexity of rock engineering problems. This paper utilizes the Rock
Engineering System (RES) method to address this issue and construct a predictive model.To
develop the model, experimental data consisting of 219 data points from various locations
were utilized. The input parameters considered in the model included the ratio between
geogrid reinforced layers diameter and footing diameter (d/D), the ratio of stone column
length to diameter (L/dsc), the grs of unreinforced soft clay (qu), the thickness ratio of
Geosynthetic Reinforced Stone Column (GRSB) and USB to base diameter (t/D), and the
settlement ratio to footing diameter (s/D). Following the implementation of the RES-based
method, a comparison was made with other models, namely linear, power, exponential,
polynomial, and multiple logarithmic regression methods. Statistical indicators such as root
mean square error (RMSE), mean square error (MSE), and coefficient of determination (R2)
were employed to assess the accuracy of the models. The results of this study demonstrated
that the RES-based method outperforms other regression methods in terms of accuracy and
efficiency.

Keywords: Rock engineering system, regression methods, geogrid-reinforced stone columns,
bearing capability, accuracy and efficiency.

Received: 10 February 2023 Accepted: 23 May 2023

“Corresponding author: Faculty of Earth Sciences Engineering, Arak University of Technology, Arak, Iran
TE-mail address: h.fattahi@arakut.ac.ir (H. Fattahia)


http://dx.doi.org/10.22068/ijoce.2023.13.4.568
https://gti.iust.ac.ir/ijoce/article-1-568-en.html

[ Downloaded from gti.iust.ac.ir on 2025-11-14 ]

[ DOI: 10.22068/ijoce.2023.13.4.568 ]

498 H. Fattahia and H. Ghaedi
1. INTRODUCTION

Soft and very soft soil deposits pose significant challenges for geotechnical engineers and
are subjects of extensive research and investigation. These soils are widespread in various
regions, including major cities, and building structures on such soils often leads to high
settlements and low shear strength. To address these issues, there is a strong need to enhance
the resistance parameters of these soils. One effective method for improving the qrs of soft
soils is the utilization of stone columns. Stone columns increase the load-bearing capacity,
reduce settlements, facilitate drainage, and mitigate excess pore water pressure.
Additionally, this method is environmentally friendly as it does not require reinforcement or
cement that could potentially harm the environment [1,2]. Early research on stone columns,
conducted by researchers such as [3,4], highlighted their positive impact on load capacity
increase and settlement reduction. Stone columns are primarily designed for soft soils and
rely heavily on lateral confining pressure for their bearing capacity. Stability is achieved
through the pressure exerted by the surrounding soil on the stone column. The concept of
utilizing geosynthetic sheaths to enhance the qrs of stone columns was introduced by Van
Impe [5]. By enclosing the stone column with geotextile, the lateral pressure increases,
preventing the granular materials of the stone column from settling into the soft soil and
significantly enhancing the bearing capacity. If the shear strength of the soil surrounding the
stone column is less than 15 kPa, a reinforced stone column is recommended over a standard
stone column. To investigate the effects of geogrid reinforcement on the grs of soft clays, a
series of laboratory tests were conducted, confirming that geogrid cylindrical reinforcements
substantially increase the bearing capacity. When geogrid is used, the final grs of a stone
column is 2 to 3 times higher compared to a case without a stone column [6,7].

Over the past three decades, numerous publications have focused on the grsof geogrid-
reinforced stone columns, with scholars conducting various investigations to gain a deeper
understanding of the behavior of ground with stone columns. Some studies have employed
numerical methods to analyze the grsof geogrid-reinforced stone columns [8-12]. Others
have utilized experimental and laboratory approaches to predict the grs of stone columns
[13,14,8,15,16]. While these studies have provided valuable insights, the uncertainty and
complexity of geological and geotechnical parameters in rock engineering cannot be fully
addressed by experimental and numerical methods alone. Deterministic approaches that
solely consider the behavior of soil and rock often yield low accuracy. Although laboratory
methods exhibit better accuracy compared to experimental and numerical methods, they are
time-consuming and costly. To overcome these limitations, modern technology and soft
computing methods are now employed to construct complex nonlinear models that account
for uncertainty.

The main focus of this paper revolves around the utilization of the RES-based method.
This method, known for its simplicity and efficiency, proves to be highly practical and
powerful in addressing rock engineering problems. It offers the capability to analyze
multiple variables simultaneously that influence the qrs of geogrid-reinforced stone columns.
Additionally, the RES method takes uncertainties into account, enabling the construction of
highly accurate models [17-19]. Consequently, extensive research utilizing the RES method
has been conducted across various engineering disciplines, particularly in rock mechanics
and mining. Examples include the assessment of vulnerability and risk following the Songun
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copper mine explosion [20], quantitative analysis of gas and explosion risks in coal mines
[21], estimation and prediction of penetration rates for TBM drilling machines in
underground spaces [22], determination of rock mass deformation modulus [19], forecasting
fragmentation and rock throwing hazards resulting from explosions in the Sarcheshme
copper mine [23], prediction of fire risks in coal mine layers [24], fragmentation and
explosion estimates for mines in Chile and Canada [25], the approach of rock mass injection
to improve conditions in foundations, dams, and underground spaces [26], preparation of
maps for estimating landslides in Sallekular located in the Jama river gorge [27], and
evaluation of hazards associated with a pile shaft lodged in rock [18].

To address the uncertainties in the input parameters, a total of 219 data points obtained
from various locations were considered. This research focuses on five key parameters that
significantly impact the qrs of geogrid-reinforced stone columns. The performance of the
RES method was evaluated by employing statistical indicators such as mean square error
(MSE), root mean square error (RMSE), and coefficient of determination (R2) to assess the
accuracy of the obtained nonlinear and complex model. Furthermore, multiple regression
methods were applied to the same input parameters and data to conduct a comparative
analysis.

2. MODEL DATASET

In this research, a total of 219 data points were collected as experimental results. The
following input parameters were considered: the ratio between geogrid reinforced layers
diameter and footings diameter (d/D), the ratio of the stone columns length to diameter
(L/dsc), the unreinforced soft clay bearing capacity (qu), the GRSB and USB thickness ratio
to base diameter ratio (t/D), and the ratio of settlement to footing diameter (s/D). The qrs of
geogrid-reinforced stone columns was taken as the output parameter. Table 1 presents a
partial overview of the input and output data [28].

Table 1. Partial input and output data for modeling [28]

Number Inputs Output

d/D L/dse  qu(KPa) t/D s/D (%) Ors (KPa)

1 0.00 6.00 7.09 0.00 0.84 11.39
2 0.00 6.00 15.56 0.00 1.72 23.10
3 0.00 6.00 23.26 0.00 2.60 33.81
4 0.00 6.00 30.77 0.00 3.65 44.57
5 0.00 6.00 37.28 0.00 4.98 53.39
6 0.00 6.00 41.84 0.00 6.41 60.63
7 0.00 6.00 45.35 0.00 8.24 66.70
8 0.00 6.00 47.86 0.00 10.22 73.48
9 0.00 6.00 49.83 0.00 12.21 78.46
10 0.00 6.00 51.36 0.00 14.20 83.56

Furthermore, Table 2 provides statistical descriptions of the model's input and output
data, including minimum, maximum, average, standard deviation, and range values.
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Table 2. Statistics description of inputs and output data set

Statistical index d/D L/dsc qu (kPa) t/D  s/D (%) rs (kPa)
Minimum 0.000  2.000 4.210 0.000  0.500 11.390
Maximum 4.000  8.000 53.820 0.500  20.000 309.760

Mean 1596  5.817 38.198 0.216 38.198 133.005
Standard deviation 1.562 1.085 15.723 0.114 6.420 77.352
Range 4.000 6000 49.610 0.500 19.500 298.370

Figure 1 displays the correlation scatter matrix between the input and output data.
Negative correlation indicates an inverse relationship, while positive correlation signifies a
direct relationship between the output and input data.
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Figure 1. Correlation scatter matrix for cumulative distributions and statistical analyses

3.1 Material Used

The experimental investigation involved the use of stone aggregate, geogrid materials, sand,
and clay. Figure 2 showcases the gradation curves for the sand, stone, and clay aggregates.
Clay served as the foundation bed for constructing the stone columns, while sand acted as
the covering over the soft clay reinforced by stone columns. The clay's plasticity index,
liquid limit, and plastic limit were measured and found to be 21%, 22%, and 43%,

3. EXPERIMENTAL TECHNIQUE
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respectively [28,29]. The soil is classified as inorganic clay with limited flexibility (CL)
according to the System of Unified Soil Classification [30].
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Figure 2. Particle size distribution curves for stone aggregate, sand and clay [28]

A series of undrained triaxial compression (UCS) tests were conducted on soil samples
with varying water contents to determine the undrained shear strength (cu) at a specific
consistency. Figure 3 illustrates the variation of c, with water content. The average water
content for the soft clay throughout the experiments was approximately 32%. Based on
calculations, the bulk density (y) at this water content was determined to be 18.15 kN/m3. A
water content of 32% was selected based on the computed cu of 10 kPa.
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Figure 3. Variation of clay's undrained shear strength with water content [28]

Ill-graded crushed stone aggregates, ranging from 2 to 6 mm in particle size and
exhibiting a coefficient of homogeneity of 2.13, were employed in the construction of the
stone columns. These crushed stone aggregates demonstrate a compression density of 70%.
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It was discovered that the bulk density of stone aggregate with a 70% relative density is 15.8
kN/m?3, and the angle of direct shear friction is 46°. Sand that passed through a 4.75 mm
sieve to create the sand blanket, also known as the sand bed, had uniformity and curvature
factors of 3.4 and 0.7, respectively. The relative density of the sand bed was 70% across all
of the experiments. The shear strength values for sand samples with a relative density of
70% in the triaxial CD test were cohesion 0 and internal friction angle 42°; the bulk density
at a relative density of 70% was 16.7 kN/m?. The sand bed was reinforced with a biaxial
geogrid layer constructed of high-density polyethylene. According to ASTM D6637 [29],
Table 3 lists the characteristics of the geogrid reinforcement.

Table 3. Geogrid properties

Parameter Value
Strain with maximum force (%) 16
Thickness (mm) 15

Mesh aperture size (mmxmm) 10x10
Strength at ultimate tension (kN/m) 20
Shear stiffness at ultimate strain [J (KN/m)] 125
Mass (g/m?) 190

3.2 Test setup

The test setup involved using a square tank with dimensions of 1000 mm length, 1000 mm
width, and 1000 mm height, as shown in Figure 4. Initially, a single thick polythene sheet
was applied to the inside walls of the test tank to reduce friction and prevent water loss.
Layers of 100 mm thick soft clay were then added to the tank to create the desired thickness.
The density and water content of the clay remained constant throughout all the testing. To
achieve a bulk density of 18.15 kN/m3, the required weight of dry clay for a 100 mm
thickness was mixed with 32% water. Steel rammers of 50 mm and 120 mm were used to
compact and crush the clay lump inside the tank. After the tank had been empty for seven
days, a plastic cover was placed over the clay-filled tank. Undisturbed soil samples were
collected from various areas of the test bed using thin-walled cylinder samplers, and their
properties were evaluated. Additionally, vane shear experiments were conducted at several
locations on a smaller scale. The clay in the test beds had a bulk unit weight of 18.15
kN/m3, shear strength of 10 kPa, and an average moisture content of 32%. The coefficient of
variance ranged from 1.3%.

Each column in the group test was constructed using a clay substrate. A steel pipe with a
50 mm-deep open end and inner and outer diameters of 48.5 mm and 50 mm, respectively,
was inserted into the clay bed at the desired position. Earth was removed using steel spiral
augers and a steel pipe, with the auger drilling a 300 mm hole through the steel pipe while
pushing it. The inner surface of the steel tube was coated with a thin layer of oil throughout
the testing. The diameter of the spiral was slightly smaller than the inner diameter of the
steel pipe. The helical augers penetrated the clay in increments of 50 mm to facilitate the
removal of clay. The relative density of the stone columns in all test series was maintained at
70%. The weight of stone required was calculated based on the volume of the hole. Five
identical pieces of stone, each weighing the calculated amount, were cut out and filled into
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the hole, ensuring uniform compaction up to a height of 50 mm. Compaction was initially
performed using a steel tamper with a 15 mm diameter, followed by one with a 25 mm
diameter.

v s
Hydraulic jack

Servo Motor Loading Frame
0 o

~—= Load Cell

Figure 4. lllustration of the experimental setup [28]

Figure 5 illustrates the arrangement of the stone pillars. The three middle stone columns'
performance can be observed in Figure 5. To simulate the field condition of compaction of
the intervening soil, a 3-column group test should include at least 12 columns, following IS
15284 Part | [31].

Loading plate
(D=200 mm)

Figure 5. Plan view of a group of stone
The columns in this study were arranged in a triangular configuration with a spacing of
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2.5 times the diameter of the column. Dry sand layers were compressed by a circular steel
hammer, achieving specific gravity up to a relative density of 70%. In the case of a GRSB
[32], a 5 mm layer of sand was added on top of the clay substrate. A geogrid was placed in a
circular arrangement at the center of the stone column group, and the required thickness was
achieved in the sand bed. The foundation consisted of a sturdy steel plate with a thickness of
15 mm and a diameter equal to the footing diameter (D). The footing was positioned in the
middle of the tank for each test.

3.3 Test procedure

Each test involved applying a load to the foundation using a hydraulic jack and a load cell
capable of supporting 100 kN. The load was increased incrementally, with equal quantities
of load applied at each step, until the footing reached a state of stabilization settling where
no noticeable change in settlement occurred (i.e., less than 0.02 mm/min). During each load
increment, settlement was measured using two LVDTSs positioned at diametrically opposed
ends of the footing, with a minimum count of 0.01 mm. A 12-channel portable data
acquisition device was used to record the data from the LVDTs and load cell. Before
conducting the tests, all equipment was calibrated properly. The load in each test was
applied until 20% of the footing diameter had completely settled. Additionally, a thin
cement slurry was injected into the three central stone columns to analyze any bulging and
lateral deformations that occurred following the load test, without disturbing the columns.
Table 4 provides an overview of the tests conducted for this project.

Table 4. Summary of the experiment

Testing series Reinforcement style Specifics of the parameters examined
1 SC+Clay L=300mm, dsc:=50mm), S=2.5%dsc
2 USB+ SC+Clay Variables: t/D=0.3, 0.4, 0.5, 0.1, 0.15, 0.2
Constants: L/ds=6, S/ds.=2.5
3 GRSB+SC+Clay Variables: t/D=0.1, 0.3, 0.2
Constants: S/dsc=2.5, d/D=4, L/ds.=6
4 GRSB+ SC+Clay Variables: d/D=2.5, 3.0, 1.5, 2.0

Constants: L/ds.=6, S/ds.=2.5, t/D=0.2
Variables: L/ds. =4.0, 8.0, 2.0
Constants: t/D=0.2, d/D=2.5, S/ds.=2.5

5 GRSB+ SC+Clay

4. STATISTICAL MODELING

4.1 Multiple Linear Regression Analysis (MLR)

In the field of rock engineering, multiple linear regression is commonly used to establish
relationships and estimate models. This method involves finding a linear relationship
between several independent variables (input parameters) and a dependent variable (output
or prediction parameter). The equation for the multiple regression line is as follows:
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y=Bo+B1X1+BoXo+...+ BnXnte 1)

In the equation, y represents the dependent parameter, x denotes the independent
parameters, e is the error term, and Bo,B1,B>,...Bn represent unknown regression coefficients
that need to be determined. A higher dispersion and deviation around the regression line
indicate a lower quality prediction model, while less divergence between the points on the
regression line indicates a more accurate prediction. In this study, a linear multiple
regression analysis was performed using the statistical program SPSS. The dependent
variable grs was analyzed with the independent variables d/D, L/ds, qu (kPa), t/D and s/D
(%). The resulting model with a carefully predicted R? value of 0.8752 is presented as
follows:

q,, (kPa) = —118.25+25.36d/D +10.37 L/d_ +7.304q, (kPa) +107.68t/D +4.2645/D (%)  (2)

To evaluate multicollinearity, the study examined significant correlations between
independent variables. Multicollinearity occurs when independent variables provide
redundant information, leading to inaccurate conclusions. The variance inflation factor (VIF)
is commonly used to assess the extent of linear relation. Table 5 provides computed VIF
values for the independent variables. If the obtained VIF is greater than 10, it may cause
issues for the multiple linear relationship [33,34].

Table 5. Collinearity and MLR coefficients for Eq. (2)

Unstandardized 95.0% Confidence Collinearity

[ Downloaded from gti.iust.ac.ir on 2025-11-14 ]

Independent coefficients Standardized interval for B statistics 2 Standard
variables coefficients g Lower Upper tvalues R error of
B Std.error Tolerance VIF estimate
bound bound
Constant -118.246 13.476 -144.850 -92.643 -8.774
d/D 25.361 1.183 0.526 23.025 27.697 0.943 1.060 21.431
L/dsc 10.373 1.932 0.129 -14.188 -6.559 0.991 1.009 5.368 0951 24,691
qu(kPa) 2.304 0.267 0.445 -2.830 -1.777 0.214 4,667  8.635 ' '
t/D 107.681 15.667 0.168 76.754 138.60 0.951 1.051 6.873
s/D(%) 4.264 0.631 0.349 -5.509 -3.019 0.214 4.667 6.762

[ DOI: 10.22068/ijoce.2023.13.4.568 ]

Table 6 presents the analysis of variance (ANOVA) and regression results for Eqg. (2).
The model's significance and the F (Sig.) value are utilized to determine whether the null
hypothesis of "no effect” can be rejected. In this study, the obtained F value was 317.630,
and the Sig. value was 0.000 (less than 0.05). These results indicate that the null hypothesis
can be rejected, providing evidence of a significant effect.

Table 6. Variance analysis for Eq. (2)

Sum of squares df Mean square F Sig.
Regression 968244.410 5 193648.882 317.630  0.000
Residual 103034.071 169 609.669
Total 1071278.482 174
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4.2 Multivariate Regression Models

In addition to multiple linear regression analysis, various multivariate regression models,
including power, exponential, polynomial, and logarithmic models, were investigated to
estimate the grsof geogrid-reinforced stone columns as the dependent variable. These
models were applied using the same dataset as the multiple linear regression analysis. The
mathematical formulas for each model and their corresponding R? values are provided
below:

The power model (with R?=0.7794), is:

0. (kPa) = 10(L:07+0.023d/D +0.081L dgc +0.01q, (kPa)+0.00001/D+0.0035/D (%) ()

The exponential model (with R? = 0.7429) is:

q,, (kPa) =exp(3.464+0.176d /D +0.71L /d_, +0.0075q, (kPa) +

0.777t/D +0.0065/D (%)) “)
The polynomial model (with R?=0.8564), is:
q,, (kPa) = —32.356 + 2.827q, (kPa) + 0.165(s/ D (%))* — 29.584(t/ D)*
+0.289(d/D)* +0.002(L/d,,)° ©)
The logarithmic model (with R?=0.9037), is:
q, (kPa)=196.312+161.861In(d /D +L/d_, +t/D)—-43.726In(q, (kPa)) + ©)

86.758In(s/D (%))

5. ROCK ENGINEERING SYSTEMS (RES)

Designing rock engineering projects for mining or construction purposes requires
consideration of all relevant variables and understanding their mutual effects within a
system. To facilitate this process, the rock engineering systems method was developed by
Hudson in 1992 as a tool for investigating the interplay of factors in a system. This approach
becomes necessary when dealing with highly complex issues that cannot be solved using
conventional methods alone [35]. In the RES approach, an interaction matrix is utilized to
examine the effects of all interactions. As depicted in Figure 6, the main factors or input
parameters are placed along the main diagonal of the matrix, while the interactions between
these factors are represented in other elements. These interactions are coded using specific
numbers to determine and quantify their effects. By performing calculations on the columns
and rows, the results can be obtained. In the matrix, the influence of parameters on each
other follows a clockwise pattern, with the lower-left quadrant indicating the effect of
parameter B on A, and the upper-right quadrant representing the effect of parameter A on B.
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| Interaction Ij in off-diagonal boxes
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g
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Figure 6. Concept of interaction matrix in RES [35]

To code the interaction matrix and represent the intensity of influence among parameters,
several methods are commonly used, including the explicit method, probabilistic expert
semi-quantitative (PESQ) method, continuous quantitative coding (CQC) [36], binary
method, and expert semi-quantitative (ESQ) method [35]. Among these methods, the ESQ
method is frequently employed due to its simplicity and high accuracy. Table 7 outlines the
ESQ method, which involves assigning scores ranging from 0 to 4 to indicate the strength of
interaction between two parameters. A score of 4 signifies a significant dependence and
relationship according to experts and engineers.

Table 7. Expert semi-quantitative method [35]

Code number Concept
0 No interaction
1 Low interaction
2 Moderate interaction
3 High interaction
4 Intense interaction

Upon completion of coding the interaction matrix, a cause-effect diagram can be
constructed. In this diagram, the sum of each row represents the "cause"” or the effect of a
parameter on the system, while the sum of each column denotes the "effect” or the effect of
the system on the parameter. Drawing the cause-effect diagram involves transferring the
cause and effect values (C and E) onto a coordinate axis. The position of each point in the
space (c and E) determines the interaction status of that parameter. The higher the numerical
value of the sum of cause and effect values (C+E) for a factor, the stronger its interaction
with the entire system. Additionally, the numerical value of the subtraction of cause and
effect (C-E) indicates the degree of dominance of that factor on the system. The cause and
effect values (C+E) aid in drawing the cause-effect diagram for each parameter. Using
Equation (7) [37], the percentage value (C + E) can be used to derive the weight (ai) of
parameter i:
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(C+E)
(Zinzlci +Zin:1 Ei)
The vulnerability index (V1) is a metric proposed by Benardos, Kaliampakos [37] within

the RES-based method to characterize the damage and collapse zones of underground
tunnels excavated using TBM. The vulnerability index is calculated using Equation (8) [37].

a = 100 @

Vi =100—Zai& (8)

i=1 max

In Equation (8), ai represents the weight of the ith parameter obtained from Eq. (7), Qmax
is the maximum value (rating) of the parameters, and Q; represents the value of each
parameter. Table 8 provides the classification of the vulnerability index based on Eqg. (8).
Higher values indicate higher project risks, while lower values indicate lower risks. In this
research, the vulnerability index has been utilized to create a model for predicting the grsof
geogrid-reinforced stone columns.

Table 8. Classification of the VI [37]

Risk description Low-medium Medium-high High-very high
VI 0-33 33-66 66-100
Category I 11 1

5.1 Multivariate Regression Models

Table 9 presents the essential parameters used to construct the qrs model based on the
RES method.

Table 9. Input parameters used for creating the res-based model

Parameter Symbol
P1  Ratio between geogrid reinforced layers diameter and footings diameter d/D
P, Ratio of the stone columns length to diameter L/dsc
P3 Unreinforced soft clay bearing capacity qu (kPa)
P4 GRSB and USB thickness ratio to base diameter ratio t/D
Ps Ratio of settlement to footing diameter s/D (%)

5.2 Multivariate Regression Models

The ESQ approach, pioneered by Hudson, serves as the basis for coding the interaction
matrix [35]. By utilizing a questionnaire and gathering input from multiple experts and
engineers, this approach determines how key factors will impact the model. In this study,
based on the input from mining and geotechnical engineers, the interaction matrix consists
of five key parameters that significantly influence the qrs of geogrid-reinforced stone
columns, as shown in Table 10.
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Table 10. Effect of input parameters on gs in the interaction matrix
Pr |2 0 0 1

1 P2 |0 0 1
0 3| Ps 3|3
1 1 3 Ps |2
2 2 2 2 Ps

Figure 7 displays the cause-effect diagram for these five parameters. In this diagram, the
main diameter represents the geometric location of C=E. Along this diameter, the sum of
C+E values increases, and lines of equal interaction intensity are drawn on the graph to
differentiate between high and low interactions. Points located in the lower right part of the
diagram indicate parameters that dominate the system, as they have larger C-E values
compared to points around the diameter. Parameters affected by the system are placed in the
upper left part of the diagram and have smaller C+E values. The cause-effect diagram is
crucial for understanding the role of each parameter in the project and identifying beneficial
and non-beneficial interactions from an engineering perspective. By calculating the amount
of interaction in terms of C+E values, parameters that require control can be identified, as
changes in these parameters may induce significant changes in the system. Based on Figure
7, parameters 1 and 5, which represent the ratio between the diameter of reinforced geogrid
layers and the diameter of the foundation, and the ratio of settlement to the diameter of the
foundation, respectively, are greatly affected by the system. Additionally, parameter 4,
which denotes the ratio of the thickness of GRSB and USB to the base diameter, has the
most significant impact on the system. In the next step, as evident from Figure 8, parameter
1 (the ratio between the diameter of the geogrid reinforced layers and the diameter of the
foundations) exhibits the highest intensity of interaction in the system compared to other
parameters. A small change in this parameter can lead to substantial changes in the system.

6

©

Effect
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Figure 7. Cause-effect plot for principal parameters of qrs

11

10

9

8
—

=] 7
-

< 6
-

w 5
+

o 4

3

2

1

0

pl p2 p3 p4 ps
Figure 8. Cause+Effect values for principal parameters of grs

5.3 Multivariate Regression Models

The values of the input parameters are ranked to determine the vulnerability index for
each dataset. These parameters are typically divided into five categories ranging from 0 to 4,
reflecting their effects on the qrs of geogrid-reinforced stone columns. A rating of 0 in this
classification represents the worst or most unfavorable state, while a rating of 4 indicates the
best or most favorable state. Based on input from specialists in mining engineering, rock
mechanics, and geotechnics, Table 11 suggests rating ranges for the elements determining
qrs.

Table 11. Suggested ratings and ranges

Number Parameters Values and Ratings

1 4/D Val_ue 0-0.09 0.09-1.6 1.6-2.2 2.2-3.5 >3.5
Rating 0 1 2 3 4

5 L/dec Val_ue <3 3-5 5-6.5 6.5-7.5 7.5>
Rating 0 1 2 3 4

3 0 (kPa) Val_ue 0-15 15-25 25-35 35-50 >50
Rating 0 1 2 3 4

4 YD Value 0-0.09 0.09-1.6 1.6-2.2 2.2-3.5 >3.5
Rating 0 1 2 3 4
Value <3 3-5 5-13 13-16 >16

S s/ (%) Rating 0 1 2 3 4

5.4 Multivariate Regression Models

In order to predict the qrs of stone columns reinforced with geogrid, a dataset comprising
219 data points was utilized. Out of these, 176 data points, equivalent to 80% of the data,
were utilized for model training and construction, while the remaining 43 data points (20%
of the data) were used for evaluating the accuracy of the model. To provide further clarity,
an example calculation of the vulnerability index for dataset number 1 is presented in Table
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12.

Table 12 Values, Ratings, and Vulnerability Indices for Dataset Number 1.

Parameters d/D L/dsc Qu (kPa) t/D s/D (%)
Value or description 0 6 7.09 0 0.84
Value rating (Qi) 0 2 0 0 0
Weighting (% ai) 25 22.2 11.11 22.2 19.44
VI 90.27

Furthermore, Figure 9 illustrates the variations in the vulnerability index (V1) for the 176
data points. The average VI, which is calculated as 16.36, indicates the presence of the third
group of risks (low to medium).
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Figure 9. VI for the Sample Data Points

After calculating the vulnerability index for the entire dataset of 219 data points, a
regression analysis based on the RES method was conducted. As shown in Figure 10, a
polynomial regression analysis was performed using 176 data points, resulting in a
coefficient of determination of 0.8914. Considering the high accuracy of the developed
equation (Eqg. (8)) during the training phase, it can be concluded that the built model can
effectively predict the grs of stone columns reinforced with geogrid.

d,. =0.0309VI* —6.7729VI +378.55 9)
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g, = 0.0309VI2 - 6.7729VI + 378.55
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Figure 10. grs—VI prediction model
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6. RESULTS AND EVALUATION OF MODEL PERFORMANCE

After constructing the models using 176 data points, the remaining 43 data points were
used to evaluate the built model. Table 13 presents a comparison of the predicted values for
the 43 data points based on linear, power, exponential, polynomial, logarithmic, and RES-
based equations.

Table 13. Comparison of Obtained Values from the Built Models and Measured grs of Geogrid-

Reinforced Stone Columns

Predicted Qrs

vi Measured grs Linear Power Exponential Polynomial Logarithmic RES
90.78 11.39 2.94 36.77 51.84 3.35 10.06 9.26
61.18 66.7 45.37 42.27 72.20 122.60 76.52 73.711
61.18 78.46 68.84 43.89 76.47 148.66 139.88 79.82
88.15 115 5.73 36.59 55.30 6.55 14.28 12.79
58.55 99.49 79.88 43.91 82.70 148.94 108.69 87.91
64.47 67.52 29.09 40.48 71.68 90.88 44.28 70.32
40.78 115.06 118.66 46.75 89.24 201.31 147.15 145.53
28.94 188.56 142.84 170.20 147.68 175.08 157.75 208.38
28.94 238.83 171.08 200.94 158.62 205.71 195.40 219.96
55.92 85.48 45.49 95.90 77.37 104.39 59.30 96.43
55.92 97.38 59.37 106.75 80.67 120.24 77.42 96.43
38.15 129.31 124.04 142.62 128.13 201.24 148.47 157.46
82.89 29.73 52.44 46.93 62.59 14.79 12.84 29.44
53.28 98.32 50.39 95.51 80.31 103.68 92.35 105.37
82.89 18.23 16.25 39.23 64.39 11.40 21.57 21.15

Three statistical indices, MSE, RMSE, and R?, were used to assess the accuracy of the
developed models. In this evaluation, a smaller value of MSE and RMSE and a larger value
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of R2 indicate that the predicted values of the qrs of geogrid-reinforced stone columns are
closer to the actual measurements, signifying higher accuracy of the built model [38-41].
The equations for these criteria are as follows:

1 =2

MSE= -3 (t —t) (10)

awise= 13 (t, )’ (1)
L Tt

RE=I-— S (12)
2t =

1k
k=1 n

In the above equations, n represents the number of samples, tx represents the real
amount, and tn represents the predicted value for the k" observation [42-44]. Table 14
presents the analysis of the models created for the 43 data points using power regression,
linear regression, exponential regression, logarithmic regression, polynomial regression
and RES regression. The results in the table demonstrate that the RES-based model
exhibits higher accuracy compared to other methods, with MSE = 0.0038, RMSE =
0.0620, and R? = 0.9552 for predicting the qrs of geogrid-reinforced stone columns.

Table 14. Performance Results of Different Constructed Models
Models MSE RMSE R2 Observations

Linear 0.0101 0.1008 0.8752 43
Power 0.0215 0.1466 0.7794 43
Exponential 0.0395 0.1988  0.7429 43
Polynomial 0.0140 0.1186 0.8564 43
Logarithmic  0.0082 0.0909  0.9037 43
RES 0.0038 0.0620  0.9552 43

To further assess the evaluation of the built models, Figure 11 displays a spider diagram
depicting the accuracy of the models using the statistical parameters MSE and R? for
different models.
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Figure 11. Comparing the Results and Evaluating the Performance of the Statistical Parameters
MSE and R2 for All Types of Built Models

To facilitate a comparison between the values obtained from the models constructed in
Table 13, Figure 12 illustrates the comparison between the RES-based model and other
regression methods for the 43 data points.
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Figure 12. Comparison of Measured and Predicted grs using Polynomial Model, Exponential
Model, Logarithmic Model, Power Model, and RES-based Mod

Based on the findings of this study, it can be concluded that the RES-based method
exhibits higher accuracy compared to other regression methods due to the close proximity of
the actual values to the predicted values. Hence, as depicted in Figure 13, the relationship
established using the RES method aligns well with the actual values, and the developed
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model can be utilized with high accuracy to predict the qrs of geogrid-reinforced stone
columns.
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Figure 13. Comparison of Measured and Predicted s for the RES-based Model

7. CONCLUSION

The construction of stone columns has proven to be an effective, cost-efficient, and
environmentally friendly method for improving cohesive and loose soils. This method has
been utilized for years to address settlement issues, enhance bearing capacity, reduce
liquefaction potential, and expedite the consolidation process of loose soils. Given the
significance and widespread application of stone columns in mitigating various geotechnical
problems, it becomes crucial to accurately estimate the qrs of geogrid-reinforced stone
columns. However, the values of soil and rock parameters vary at different locations, leading
to uncertainties in the project. Therefore, minimizing uncertainties and achieving accurate
estimations are vital for reliable predictions of stone column behavior.

To address this challenge, a new RES-based method was developed in this study to
enhance the prediction of geogrid-reinforced stone column bearing capacity in mining and
geotechnical applications. The RES technique takes into account the nonlinearity and
complexity of soil and rock behavior, as well as the influence of crucial parameters on the
grs Of geogrid-reinforced stone columns. By constructing a comprehensive and nonlinear
model, the RES technique enables more accurate and reliable predictions of stone column
behavior.

To assess the effectiveness of the RES-based approach, an experimental dataset
comprising 219 data points obtained from various locations was utilized. Five input
parameters, namely d/D, L/dsc, qu (kPa), t/D, and s/D (%), were considered as influential
factors in estimating grs. The findings of this study demonstrated that the RES-based
method outperformed other regression methods in estimating the qrs of geogrid-reinforced
stone columns, with performance metrics of MSE=0.0038, RMSE=0.0620, and R?=0.9552.

These results highlight the success of the RES-based method in overcoming the
limitations of conventional approaches and improving the accuracy of predicting grs of
geogrid-reinforced stone column. The RES technique provides a powerful tool for
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geotechnical engineers and rock mechanics specialists to address soil and rock behavior
challenges by considering uncertainties, avoiding simplifications, and accounting for the
influence of critical parameters. The implications of this research are significant for
engineers and researchers involved in mining and geotechnical projects. Accurate prediction
of qgrs of geogrid-reinforced stone column enables optimized design, enhanced safety
measures, mitigation of potential failures, and increased overall productivity in stone and
mining projects. The RES-based approach empowers engineers to make well-informed
decisions regarding stone column design and construction by providing valuable insights
and assistance in the decision-making process.

In conclusion, the utilization of the RES method presented in this study offers a robust
tool for enhancing the accuracy of predicting qrs of geogrid-reinforced stone column in
mining and geotechnical projects. The research results underscore the potential of the RES
method to revolutionize the fields of geotechnical engineering and rock mechanics by
enabling engineers to overcome challenges and optimize stone column-based structures for
improved safety and efficiency in mining and geotechnical operations.
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