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ABSTRACT

An efficient method is proposed by using time domain responses and topology optimization
to identify the location and severity of damages in two-dimensional structures under plane
stress assumption. Damage is assumed in the form of material density reduction in the finite
element model of the structure. The time domain responses utilized here, are the nodal
accelerations measured at certain points of the structure. The responses are obtained by the
Newmark method and contaminated with uniformly random noise in order to simulate real
conditions. Damage indicators are extracted from the time domain responses by using
Singular Value Decomposition (SVD). The problem of damage detection is presented as a
topology optimization problem and the Solid Isotropic Material with Penalization (SIMP)
method is used for appropriate damage modeling. The objective function is formed based on
the difference of singular values of the Hankel matrix for responses of real structure and the
analytical model. In order to evaluate the correctness of the proposed method, some
numerical examples are examined. The results indicate efficiency of the proposed method in
structural damage detection and its parameters such as resampling length in SVD, penalty
factor in the SIMP method and number and location of sensors are effective parameters for
improving the results.
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1. INTRODUCTION

Structural health monitoring aims to extract characteristics of structures by using structural
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responses via performing inverse analysis and detect damages by tracking changes occurred
in the characteristics. The occurrence of damage causes change in physical characteristics of
a structure such as stiffness, mass and damping, which affects the vibration responses.
Therefore, in recent decades, non-destructive methods of damage identification using
vibration responses have been considered by several researchers.

In recent years, topology optimization is being utilized as a robust tool for damage
identification. In such problems, the material density reduction in each element is assumed
as damage, therefore the material density instead of the damage severity is considered as
design variables. Lee et al. [1] identified damages in plate and beam structures by using both
resonant and anti-resonant frequencies as an objective function and the moving asymptotes
method. Niemann et al. [2-4] estimated the approximate location of the damage in CFRP
laminates after impact tests. This approach was based on the correlation of the local stiffness
loss and the change in modal parameters due to damages in structures. Nishizu et al. [5]
identified shape and location of damage in plane stress and plate bending structures by
analyzing eigenfrequencies and using the moving asymptotes method. Although, identifying
the damage shape was not accurate, determining the damage location was acceptable. Zhang
et al. [6] identified damage in continuum structures by using data of natural circular
frequencies and the level set method . Eslami et al. [7] defined two objective functions based
on natural frequencies and mode shapes and used the SIMP method to detect structural
damages in plane stress problems. Abdollahi and Tavakkoli [8] used mode expansion
techniques and the SIMP method to identify damages in three dimensional elasticity
problems.

A local damage identification method based on topology optimization and the SIMP
method is also proposed by Ryuzono et al. [9]. The authors analyzed visualized ultrasonic
wave propagation on a stainless-steel plate with an artificial crack, then defined an objective
function based on the maximum amplitude of the mean stress which adopted as the
ultrasonic feature. Sugai et al. [10] presented a damage identification method based on
topology optimization and Lasso regularization. Static displacements or dynamic responses
were used to identify the structural damages. Due to the large number of design variables, a
regularization was added to the objective functions to suppress active design variables and
delete artificially generated damages during topology optimization process. Dizaji et al. [11]
detected and reconstructed the location, extent and 3D shape of internal damage in structural
members. Full-field response data obtained by digital image correlation were leveraged in a
topology optimization framework. The method of moving asymptotes as the optimization
algorithm was used to minimize the objective function.

According to the previous studies, it can be observed that modal parameters are often
used to extract the damage indicators for the objective functions. The objective function
proposed in this research, is based on singular values which extracted from the time domain
acceleration responses and for the first time is used in a topology optimization problem to
detect the location and severity of damage. The SIMP method is employed that makes the
possibility of providing porous areas of materials which enables the algorithm to find both
the location and extent of the damage throughout the design domain. A simple algorithm of
steepest descent method is used to optimize the objective function. It is noted that meta-
heuristic algorithms have mainly be used for damage detection for minimizing the objective
functions based on modal data and modal strain energy [12-17] and also based on time
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domain responses [18-21].

In field of damage detection, SVD is usually used for different purposes such as feature
extraction, noise reduction and eliminating environmental and operational effects.
Vanlanduit et al. [22] proposed a technique based on robust SVD to detect damage in
structures from measurements taken under different conditions. The robust SVD was able to
compute the distance of an observation to the subspace spanned by the intact measurements.
Liu et al. [23-25] developed an ultrasonic damage detection method based on SVD. They
used the orthogonality property of singular vectors and through that separated environmental
and operational variations into different singular vectors. Rahai et al. [26] proposed a
sensitivity-based model updating method using SVD of transfer function subsets. The first-
order and second-order changes of SVD parameters was presented to detect damage severity
and location.

The objective of this study is utilizing the SVD to extract damage sensitive features under
random excitation with additional noises. It is assumed that the structure is made of
homogeneous and isotropic materials and it is within the range of small deformations with
linear behavior. In this article, first, in section 2, the process of calculating the time domain
responses is described. In section 3, the SVD method for calculating singular values and
forming the objective function are presented. Section 4 is assigned to defining the
optimization problem and introducing the algorithm parameters. The optimization algorithm
and numerical examples are provided in sections 5 and 6.

2. CALCULATION OF TIME DOMAIN RESPONSES

When a damage is occurred in a structure, the vibration characteristics are affected. One of
the most important characteristics is the time domain responses, which can be measured
directly and at a lower cost than other data. According to the principles of structural
dynamics, the governing differential equation for multi degree of freedom (DOF) structures
is shown as below [27]:

MX +CX +KX =F(t) (1)

where M, C and K denote the mass, damping and stiffness matrices of the structure,
respectively. X , X and X represent vectors of response acceleration, velocity and nodal
displacement in the global coordinate system, respectively, and P(t) is the time-dependent
vector of the external load applied to the structure.

This study is based on the output-only identification method and damage identification is
performed only by using the measured responses of the structure. In all output-only
identification methods, a special type of excitation called white noise is considered as the
input of the system. Because ambient excitations cover a wide range of frequencies and can
be well simulated by the broad band excitation of white noise which has the constant
intensity in all frequencies [28].

The second-order ordinary differential equations in the time domain given by equation
(1) can be solved by the Newmark method [29] that is used here to evaluate the vibration
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responses of the structure. According to the Newmark method, nodal displacements in the
n+1" step can be determined as follows:

X pa =Ko xFy @)

where K, and F,, are the equivalent stiffness matrix and equivalent nodal forces calculated
by equation (3) and (4), respectively, given as below:

Ky =3M+aC+K ®)
Feq = F+M(aox n —aZX n _aSXn)+C(a1X n _a4Xn _aSXn) (4)

Finally, to determine the vector of nodal acceleration and velocity, the equations (5) and
(6) can be used as:

X'n+1:a0(>< n+l_Xn)_a2Xn_a3X"n (5)
Xn+l:Xn_a6Xn_a7Xn+1 (6)

where the factors a, (i =0,...,7) are given as:

1 yij 1 1 Jij
=—, =—, a:—’ :——1’ a.:__l,
YToar ATt T *2T 2. ‘o
a5:7(——2j, 3, =At(l-a) and a, = pAt
a

where o = % 1+y)*, B= % +y and y is considered to be zero in this study.

3. SINGULAR VALUES AS DAMAGE INDICATORS

The basic principle in vibration-based damage detection methods is that the damage affects
the properties of mass, stiffness and damping of the structure. The problem of damage
detection can formulate in the form of minimizing a correlation indicator between the
structural data in healthy and damaged states. In this paper, these indicators are singular
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values obtained from the time domain responses via SVD method as described below, and
finally, topology optimization is used to identify the location and severity of the damage.
SVD is a method of signal processing that has become one of the most useful tools in
mathematics and related fields. The measured acceleration responses with length N are
selected as a series of data for analysis. The steps of SVD for signal processing are as
follows.

3.1 Matrixing of vibration signal

In the first step, it is necessary that the vibration signal to be transformed into a matrix
structure. In order to form decomposed signal components to inherit more information from
the raw signal, the Hankel matrix structure is used. In order to construct the matrix, the
phase space needs to be reconstructed by the coordinate delay method so that the elements in
each anti-diagonal are equal [30]. The Hankel matrix is obtained as:

X(1) X(2) -+ X(N-L+1)
- X(:2) X(:3) X(N _:L+2) ®)
x(L) x(L+1) --- X(N)

where the number of x(1) to x(L) denotes the resampling length of the signal which can be a
value between 1 and N.
3.2 SVD of a matrix

Based on the matrix decomposition theory, the SVD of H can be expressed as:
H=UzV' 9)

where X =diag (o,,0,,03,...,0,) denotes the diagonal matrix of the singular values
o, (i =123,..,r)ofH and 0,20, >0,>--->0,. The U and V are a pair of orthogonal

matrices which their columns represent the left and right-singular vectors of H, respectively,
and are shown as below:

U=[u,,u,,us,..,u Je R""
{ [uy,Uz,U5,..0, )

V=,v,V,,..v,]JeR™ "

where the column vectors v, and u; are the base vectors in row space and column space of
matrix H, respectively.
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3.3 Objective function

Selection of objective function in damage detection problems is a critical issue as it plays
essential role in convergence of the optimization algorithm. In many researches, various
correlation indices have been chosen as the objective function. Since one of the common
challenges in time domain responses-based damage detection methods is the large number of
data; using SVD is an effective method to reduce the variables in the objective function.
SVD can approximate a matrix with high accuracy by reducing the data to a certain number
of singular values. This feature can be used to compress data with shortened forms of
singular values instead of time history acceleration data.

In this research, the objective function is based on the difference of singular values
obtained by SVD from the measured responses of the real structure and the model as
follows:

minp:{f (p)=Nzi(M>2}

i=1j=1 Gj

(11)
subjected to: 0<p <1 , k=1..n

where p is the design variables vector that is considered the density of each element here. N
and L are the number of sensors and resampling length, respectively. o; (o) and a; are the

singular values which extracted from the acceleration responses of the analytical and real
models of the structure, respectively. p, is the damage index of the element k and n, is the

number of elements.

4. DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION

In this research, topology optimization is used as a tool to detect the damaged domain at the
element level. For this purpose, the damage is assumed in the form of a stiffness reduction
which is caused by the material density reduction. In the field of damage detection, the
objective function is the difference between the observed load effects in the physically
damaged sample and its simulated intact counterpart. Here, the SIMP method [31] is used to
parametrize the problem. In this method by the power law, materials with medium density
are penalized in order to encourage to a favorable configuration and remove materials. The
damage parameter which is the density p, , is defined over each element. In this way, the

damage identification problem is converted to a material density distribution problem in the
design domain D as follows:

1 xeD\Q, nodamage
Pe = (12)

0<puin<p. <l xeQ damage
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where Q, and D \Q, are the damaged and intact domains, respectively. The Young's
modulus of the element e is expressed as a function of damage parameter as follows [32]:

E.(p.)=(E,-Ey)p+E, (13)

where E,and E jare Young's modulus of solid (i.e., perfectly intact) and void elements (i.e.,
perfectly damaged), respectively. Also, u is the penalization exponent. To avoid singularity,
a small stiffness (E, = 0.001 MPa) is assigned for fully damaged elements. Also, in order to
achieve better results, the values of z by using the continuation method changes in the first

steps during the optimization process [33].
According to the SIMP method, due to any density reduction in element e, the elasticity
matrix C, and consequently element matrices are affected as:

C(p)=pC , pu=1 (14)
K.(p.)=p![ B'CBdQ (15)
M.(p.)=p!M; = p/N'd NdQ (16)

where K, and M, are the element stiffness and mass matrices, respectively. B is the strain-

displacement matrix and Q is the element volume, M is the element mass matrix of

undamaged structure, d is the material density and N is the finite element shape functions
matrix. Also changes in the stiffness and mass matrix lead to changes in the damping matrix.
In this research, classical Rayleigh damping [27] is used to construct the damping matrix as
follows:

C=aM+aK (17)
20,0, 2
a=¢—— , &=¢ (18)
@, + o @+,

where C is the damping matrix, a, and a, are constants of proportionality and ¢ is the
damping ratio. Therefore, the following equation is applied to the damping matrix:
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C.(p)=pLC, (19)

where C; is the element damping matrix of undamaged structure. Therefore, according to

the above equations and equation (1), it is concluded that the acceleration, velocity and
displacement vectors are affected by damage.

In the present problem, since the gradient-based optimization method is used, sensitivity
analysis needs to be performed by differentiating the objective function with respect to the
design variables. In topology optimization under dynamic loads with numerous design
variables, the analytical sensitivity analysis method is not recommended because for each
design variable, needs to solve the second-order differential equation that is a time-
consuming process and makes this method inefficient [34]. Therefore, in the present
problem, the finite difference method is used for sensitivity analysis.

5. OPTIMIZATION ALGORITHM

In this paper, the steepest descent method is used to solve the unconstrained optimization
problem. Therefore, d “ which is the search direction in iteration k is considered as below:

d* =-Vf (p") (20)
During successive iterations, design variables are updated using the following equation
Pt =p" —avi (p“) (21)

where « is a positive numerical parameter and is called the step size, which is determined
here by the golden search method. The steepest descent algorithm for the proposed damage
detection problem is given in Table 1 [35], [36].

Table 1. The steepest descent algorithm for damage detection

Step 1. Given p) (starting value of design variable),

Setting k =0 (Repeat counter),
Selecting € >0 (Convergence parameter).

Step 2. Calculating f (™) and Vf (p*) (function and gradient vector).

Step 3. Calculating d* =—-Vf (p*’) (search direction).

Step 4. If HVf (p(k))H<g then the iteration process stops because p” = p* is the

optimum point.

Step 5. Calculating the step size «, (by using the golden search method) based on



http://dx.doi.org/10.22068/ijoce.2023.13.2.553
https://gti.iust.ac.ir/ijoce/article-1-553-en.html

[ Downloaded from gti.iust.ac.ir on 2025-11-21 ]

[ DOI: 10.22068/ijoce.2023.13.2.553 ]

STRUCTURAL DAMAGE DETECTION IN PLANE STRESS PROBLEMS BY ... 265

minimization f () =f (p* +ad ®’) in direction d .

(k +1)

Step 6. Updating design variables using p* ™ = p®) + o, d®).

k =k +1and going to step 2.

It is also noted that in the first step it is assumed that the structure is perfectly healthy
and, therefore, starting value of design variables is considered to be 1 (i.e., p° =1). In the

second step, the mass, stiffness and damping matrices and the time domain responses of the
structure are calculated in order to determine the objective function. Also, the gradient
vector of the objective function is obtained by sensitivity analysis. In the third step, it is
necessary to apply the design variables constraint in the form of 0< p, <1 .

6. NUMERICAL EXAMPLES

In order to demonstrate the capability of the introduced objective function, four numerical
examples are presented in this section. In all examples, Young's modulus and Poisson's ratio
are considered as 2 Pa and 0.3, respectively, and the material density is 0.00785 kg/cm?3. In
order to simulate ambient excitations, the vibration load is applied in the form of Gaussian
white noise at one of DOFs in the vertical direction. The random acceleration response is
calculated using the finite element analysis and the Newmark's time step method for all
DOFs, with a sampling rate of 1000 samples per second and a duration of 0.2 Sec. The
initial value of the design variables is assumed to be 1, that means no damage is considered
in structural elements at the beginning of the optimization process. Also, the penalty factor (
1) by using the continuation method in the first 100 optimization steps is gradually

decreased from 3 to 1, and the optimization continues with 4 =1 in the next steps. One of

the main issues related to structural damage detection in real situations, is sensitivity to
noise. It was decided to add white Gaussian noise to the acceleration time history responses
generated by the finite element code. To achieve this, a scaler quantity SNR (Signal-to-
Noise-Ratio) is specified to define the ‘amplitude’ of the noise with respect to that of the
clean signal. When the noise level is given by a particular value of SNR, it means that a
noisy signal with such an SNR has been added to the time domain responses of each node.
Therefore, severe experimental conditions are simulated, because the noisy sequences
affecting different nodes are uncorrelated [37]. In all the examples, the signal is affected by
noise level characterized by the value SNR=40.

6.1 Example 1

A cantilever beam with dimensions of 40x10 cm and thickness of 1 cm is shown in Figure 1.
To solve the problem, the beam is discretized into 100 square linear finite elements with
dimensions of 2x2 cm. Damage is assumed as 100% density reduction in two elements. Five
sensors are installed in the specified nodes on the structure to record the acceleration
responses in vertical DOFs. The damaged elements, the location of sensors and dynamic
load are depicted in Figure 1. The vibration load applied to the end of the beam is a white
noise random excitation that is shown in Figure 2.
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Figure 1. The cantilever beam related to Example 1
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Figure 2. Applied random white noise excitation
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Choosing appropriate signal resampling length is of particular importance. In order to
investigate its effect on the accuracy of damage detection, the problem is solved with two
different resampling lengths. These values are considered as 10 and 50. The detected
damages after 400 iterations along with the iteration history graphs are shown in Figures 3
and 4. It is observed that in two cases, the damage location and severity are identified and
there are some fictitious damages in a few elements. In the second state with resampling
length as 50, there are some spikes in iteration history of the objective function in the last
iterations. In fact, using too long resampling length causes signal characteristics are not
appropriately derived. Therefore, with resampling length of 10, more acceptable results have
been obtained and the severity of fictitious damages has been reduced.
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Figure 3. Results with resampling length of 10: (a) identified damages (b) iteration history
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Figure 4. Results with resampling length of 50: (a) identified damages after 400 iterations (b)

6.2 Example 2

iteration history

A simple supported beam is studied in this example where the damages are assumed in two
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elements with 100% decrease in density, as depicted in Figure 5. The vibration load applies
to the middle node of the beam as a random excitation and five sensors are used in a row
that records acceleration responses in vertical DOFs. The resampling length is chosen equal
to 10.

40 cm |

F H o
r

10 cm

F(t)

v
Figure 5. The simple supported beam in Example 2

Figure 6 shows damage detection results and the iteration history. The results indicate
that the location and severity of damage are properly identified. In addition, fictitious
damages are also appeared in the adjacent elements to the damaged area and left support.
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Figure 6. Results of Example 2: (a) identified damages (b) iteration history

6.3 Example 3

In this example, an L-shaped beam is considered as depicted in Figure 7 with two damaged
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elements and three sensors. The density of damaged elements is reduced by 100%. The
beam is divided into 60 square elements with dimensions of 2x2 cm. The sensors record the
acceleration responses in vertical DOFs. The resampling length of SVD is considered as 10.

20 cm

F(t)

Figure 7. The L-shaped beam in Example 3 - sensors arrangement 1

In order to investigate the effect of location of the sensors on results accuracy, the
problem is solved in two states with two different sensors arrangements. The arrangements
are shown in Figures 7 and 8. The damage detection results and iteration history graphs are
shown in Figures 9 and 10. From the results, it is clear that damages are identified more
accurate for the first arrangement and also less fictitious damages are appeared in the
structure. It can be concluded that it is more appropriate to install the sensors at the points
that have larger displacement and acceleration.

10cm —

L 4

8 cm

8 cm

20 cm
F(t)

Figure 8. The L-shaped beam in Example 3 - sensors arrangement 2
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Figure 9. Results for sensor arrangements 1: (a) identified damages (b) iteration history
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Figure 10. Results for sensor arrangements 2: (a) identified damages (b) iteration history

6.4 Example 4

In this example a cantilever beam is considered with dimensions of 20x18 cm with an
opening with dimensions of 6x8 cm as illustrated in Figure 11. The beam is discretized into
68 square linear finite elements with dimensions of 2x2 cm. Damage exists in one element.
Three sensors have been installed in the specified nodes on the structure to record the
vertical acceleration responses. The resampling length of SVD is set to be 10.
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20 cm

16 cm

F(t)

Figure 11. The cantilever beam in Example 4

According to Figure 12, the results show that the damage severity and location is
identified correctly, however, some fictitious damages are slightly appeared. It should also
be noted that the slope discontinuity in iteration history is because the continuation method
is used in the first 100 iterations where the penalty exponent p is reduced from 3 to 1 and
after that remains constant.
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Figure 12. Results of Example 4: (a) identified damages (b) iteration history

7. CONCLUSION

This paper presents a vibration-based damage detection method by using topology
optimization in which singular values extracted from acceleration responses are considered
as the objective function. The damage detection problem is formulated as a standard
optimization problem to minimize the objective function, and find continuous damage
variables. The objective function is defined based on singular values of the Hankel matrix
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that is constructed by time domain acceleration responses measured from a given number of
sensors installed on the structure. The damage is modeled as a density reduction in the
structure and the SIMP method is used to parameterize the topology. The sensitivity analysis
is achieved by the finite difference method and the damage detection problem is solved by
the steepest descent method. Numerical examples show that the proposed method can
evaluate the location of damages by using time domain responses of the structure under
random excitation with additional noise. The examples also show that the results can be
improved by selecting appropriate algorithm parameters such as resampling length to form
the Hankel matrix, penalty exponent values in the continuation method, and the number and
location of sensors on the structure.
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